Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Affected newborns generally have striking neurological defects and seizures. Severely impaired development is common, but disturbances in motor functions may not appear until later in life.
Infants with microcephaly are born with either a normal or reduced head size. Subsequently, the head fails to grow, while the face continues to develop at a normal rate, producing a child with a small head and a receding forehead, and a loose, often wrinkled scalp. As the child grows older, the smallness of the skull becomes more obvious, although the entire body also is often underweight and dwarfed. Development of motor functions and speech may be delayed. Hyperactivity and intellectual disability are common occurrences, although the degree of each varies. Convulsions may also occur. Motor ability varies, ranging from in some to spastic quadriplegia in others.
Microcephaly is a type of cephalic disorder. It has been classified in two types based on the onset:
Cephalic disorders (from the Greek word "κεφάλι", meaning "head") are congenital conditions that stem from damage to, or abnormal development of, the budding nervous system. Cephalic means "head" or "head end of the body."
Cephalic disorders are not necessarily caused by a single factor, but may be influenced by hereditary or genetic conditions, nutritional deficiencies, or by environmental exposures during pregnancy, such as medication taken by the mother, maternal infection, or exposure to radiation. Some cephalic disorders occur when the cranial sutures (the fibrous joints that connect the bones of the skull) join prematurely. Most cephalic disorders are caused by a disturbance that occurs very early in the development of the fetal nervous system.
The human nervous system develops from a small, specialized plate of cells on the surface of the embryo. Early in development, this plate of cells forms the neural tube, a narrow sheath that closes between the third and fourth weeks of pregnancy to form the brain and spinal cord of the embryo. Four main processes are responsible for the development of the nervous system: cell proliferation, the process in which nerve cells divide to form new generations of cells; cell migration, the process in which nerve cells move from their place of origin to the place where they will remain for life; cell differentiation, the process during which cells acquire individual characteristics; and cell death, a natural process in which cells die.
Damage to the developing nervous system is a major cause of chronic, disabling disorders and, sometimes, death in infants, children, and even adults. The degree to which damage to the developing nervous system harms the mind and body varies enormously. Many disabilities are mild enough to allow those afflicted to eventually function independently in society. Others are not. Some infants, children, and adults die, others remain totally disabled, and an even larger population is partially disabled, functioning well below normal capacity throughout life.
The National Institute of Neurological Disorders and Stroke (NINDS) is currently "conducting and supporting research on normal and abnormal brain and nervous system development."
The classic triad for congenital rubella syndrome is:
- Sensorineural deafness (58% of patients)
- Eye abnormalities—especially retinopathy, cataract, and microphthalmia (43% of patients)
- Congenital heart disease—especially pulmonary artery stenosis and patent ductus arteriosus (50% of patients)
Other manifestations of CRS may include:
- Spleen, liver, or bone marrow problems (some of which may disappear shortly after birth)
- Intellectual disability
- Small head size (microcephaly)
- Eye defects
- Low birth weight
- Thrombocytopenic purpura
- Extramedullary hematopoiesis (presents as a characteristic blueberry muffin rash)
- Hepatomegaly
- Micrognathia
Children who have been exposed to rubella in the womb should also be watched closely as they age for any indication of:
- Developmental delay
- Autism
- Schizophrenia
- Growth retardation
- Learning disabilities
- Diabetes mellitus
- Glaucoma
There are various symptoms of colpocephaly and patients can experience effects ranging from mild to severe. Some patients do not show most of the symptoms related to colpocephaly, such as psychomotor abnormalilities and agenesis of the corpus callosum. In some cases, signs appear later on in life and a significant number of children suffer only from minor disabilities.
The following list includes common symptoms of colpocephaly.
- partial or complete agenesis of the corpus callosum
- intellectual disability
- motor abnormalities
- visual defects such as, crossing of the eyes, missing visual fields, and optic nerve hypoplasia
- spasticity
- seizures
- cerebral palsy
Intracranial abnormalities include:
- Microcephaly
- Agenesis of the corpus callosum
- Meningomyelocele
- Lissencephaly
- Periventricular leukomalacia (PVL)
- Enlargement of the cisterna magna
- Cerebellar hypoplasia
Microlissencephaly Type B or Barth microlissencephaly syndrome: is a microlissencephaly with thick cortex, severe cerebellar and brainstem hypoplasia. The Barth-type of MLIS is the most severe of all the known lissencephaly syndromes.
This phenotype consists of polyhydramnios (probably due to poor fetal swallowing), severe congenital microcephaly, weak respiratory effort, and survival for only a few hours or days. Barth described two siblings with this type as having a very low brainweight, wide ventricles, a very thin neopallium, absent corpus callosum and absent olfactory nerve.
Microlissencephaly with mildly to moderately thick (6–8 mm) cortex, callosal agenesis
Where known, the ICD-10 code is listed below.
- Anencephaly (Q00.0)
- Colpocephaly (ICD10 unknown)
- Holoprosencephaly (Q04.2)
- Ethmocephaly (ICD10 unknown)
- Hydranencephaly (Q04.3)
- Iniencephaly (Q00.2)
- Lissencephaly (Q04.3)
- Megalencephaly (Q04.5)
- Microcephaly (Q02)
- Porencephaly (Q04.6)
- Schizencephaly (Q04.6)
Congenital rubella syndrome (CRS) can occur in a developing fetus of a pregnant woman who has contracted rubella, usually in the first trimester. If infection occurs 0–28 days before conception, the infant has a 43% risk of being affected. If the infection occurs 0–12 weeks after conception, the risk increases to 51%. If the infection occurs 13–26 weeks after conception, the risk is 23% of the infant being affected by the disease. Infants are not generally affected if rubella is contracted during the third trimester, or 26–40 weeks after conception. Problems rarely occur when rubella is contracted by the mother after 20 weeks of gestation and continues to disseminate the virus after birth.
It was discovered in 1941 by Australian Norman McAlister Gregg.
After birth, MR imaging can be done to look for cephalic abnormalities. This is the most commonly used method for diagnosing colpocephaly. Physicians look for abnormally large occipital horns of the lateral ventricles and diminished thickness of white matter. Spinal tapping is not a preferred method for diagnosis because newborn babies with colpocephaly or hydrocephaly have open fontanelles which makes it difficult to collect CSF. Also, colpocephaly is not associated with increased pressure.
Microhydranencephaly (MHAC) is a severe abnormality of brain development characterized by both microcephaly and hydranencephaly. Signs and symptoms may include severe microcephaly, scalp rugae (a series of ridges), and profound developmental delay. Familial occurrence of the condition is very rare but it has been reported in a few families. It has been suggested that MHAC is possibly inherited in an autosomal recessive manner.
Macrocephaly is customarily diagnosed if head circumference is greater than two standard deviations (SDs) above the mean. Relative macrocephaly occurs if the measure is less than two SDs above the mean, but is disproportionately above that when ethnicity and stature are considered. In research, cranial height or brain imaging is also used to determine intracranial volume more accurately.
Neu-Laxova syndrome presents with severe malformations leading to prenatal or neonatal death. Typically, NLS involves characteristic facial features, decreased fetal movements and skin abnormalities.
Fetuses or newborns with Neu–Laxova syndrome have typical facial characteristics which include proptosis (bulging eyes) with eyelid malformations, nose malformations, round and gaping mouth, micrognathia (small jaw) and low set or malformed ears. Additional facial malformations may be present, such as cleft lip or cleft palate. Limb malformations are common and involve the fingers (syndactyly), hands or feet. Additionally, edema and flexion deformities are often present. Other features of NLS are severe intrauterine growth restriction, skin abnormalities (ichthyosis and hyperkeratosis) and decreased movement.
Malformations in the central nervous system are frequent and may include microcephaly, lissencephaly or microgyria, hypoplasia of the cerebellum and agenesis of the corpus callosum. Other malformations may also be present, such as neural tube defects.
Mild prenatal growth retardation
Moderate postnatal growth retardation
Mild to severe developmental delay
Severely impaired speech
Seizures
Microcephaly
Sparse hair
Progressive skin wrinkling
Thick, anteverted alae nasi
Long and broad philtrum
Large mouth
Thin upper and thick lower vermilion
Progressive prominence of distal phalanges
Progressive prominence of inter-phalangeal joints
Short metacarpals–metatarsals
Schizencephaly can be distinguished from porencephaly by the fact that in schizencephaly the fluid-filled component, if present, is entirely lined by heterotopic grey matter while a porencephalic cyst is lined mostly by white matter. Individuals with clefts in both hemispheres, or bilateral clefts, are often developmentally delayed and have delayed speech and language skills and corticospinal dysfunction. Individuals with smaller, unilateral clefts (clefts in one hemisphere) may be weak or paralyzed on one side of the body and may have average or near-average intelligence. Patients with schizencephaly may also have varying degrees of microcephaly, Intellectual disability, hemiparesis (weakness or paralysis affecting one side of the body), or quadriparesis (weakness or paralysis affecting all four extremities), and may have reduced muscle tone (hypotonia). Most patients have seizures, and some may have hydrocephalus.
Macrocephaly may be pathological, but many people with abnormally large heads or large skulls are healthy. Pathologic macrocephaly may be due to megalencephaly (enlarged brain), hydrocephalus (water on the brain), cranial hyperostosis (bone overgrowth), and other conditions. Pathologic macrocephaly is called "syndromic" when it is associated with any other noteworthy condition, and "nonsyndromic" otherwise. Pathologic macrocephaly can be caused by congenital anatomic abnormalities, genetic conditions, or by environmental events.
Many genetic conditions are associated with macrocephaly, including familial macrocephaly related to the holgate gene, autism, "PTEN" mutations such as Cowden disease, neurofibromatosis type 1, and tuberous sclerosis; overgrowth syndromes such as Sotos syndrome (cerebral gigantism), Weaver syndrome, Simpson-Golabi-Behmel syndrome (bulldog syndrome), and macrocephaly-capillary malformation (M-CMTC) syndrome; neurocardiofacial-cutaneous syndromes such as Noonan syndrome, Costello syndrome, Gorlin Syndrome, (also known as Basal Cell Nevus Syndrome) and cardiofaciocutaneous syndrome; Fragile X syndrome; leukodystrophies (brain white matter degeneration) such as Alexander disease, Canavan disease, and megalencephalic leukoencephalopathy with subcortical cysts; and glutaric aciduria type 1 and D-2-hydroxyglutaric aciduria.
At one end of the genetic spectrum, duplications of chromosomes have been found to be related to autism and macrocephaly; at the other end, deletions of chromosomes have been found to be related to schizophrenia and microcephaly.
Environmental events associated with macrocephaly include infection, neonatal intraventricular hemorrhage (bleeding within the infant brain), subdural hematoma (bleeding beneath the outer lining of the brain), subdural effusion (collection of fluid beneath the outer lining of the brain), and arachnoid cysts (cysts on the brain surface).
Neu–Laxova syndrome (also known as Neu syndrome or Neu-Povysilová syndrome, abbreviated as NLS) is a rare autosomal recessive disorder characterized by severe intrauterine growth restriction and multiple congenital malformations. Neu–Laxova syndrome is a very severe disorder, leading to stillbirth or neonatal death. It was first described by Dr. Richard Neu in 1971 and Dr. Renata Laxova in 1972 as a lethal disorder in siblings with multiple malformations. Neu–Laxova syndrome is an extremely rare disorder with less than 100 cases reported in medical literature.
The most common symptoms of Nicolaides–Baraitser syndrome are mild to severe developmental delays with absent or limited speech, seizures, short stature, sparse hair, typical facial characteristics, brachydactyly, and prominent finger joints and broad distal phalanges.
Schizencephaly () is a rare birth defect characterized by abnormal clefts lined with grey matter that form the ependyma of the cerebral ventricles to the pia mater. These clefts can occur bilaterally or unilaterally. Common clinical features of this malformation include epilepsy, motor deficits, and psychomotor retardation.
Symptoms include:
- intellectual disability (more than half of the patients have an IQ below 50)
- microcephaly
- sometimes pancytopenia (low blood counts)
- cryptorchidism
- low birth weight
- dislocations of pelvis and elbow
- unusually large eyes
- low ears
- small chin
The signs and symptoms of Kaufman oculocerebrofacial syndrome are consistent with the following:
- High palate
- Microcephaly
- Constipation
- Intellectual disability
- Muscular hypotonia
- Nystagmus
Microcephaly is a characteristic in which the circumference of the head is smaller than normal due to improper development of the brain. It is caused by genetic disorders, infections, radiation, medications or alcohol abuse during pregnancy. Defects in the growth of the cerebral cortex lead to many of the features associated with microcephaly. There is currently no known method of correcting microcephaly. However, there are a variety of symptomatic treatments that help to counter some of its adverse effects, such as speech and occupational therapies, as well as medication to control seizures and hyperactivity. Microcephaly has a vast range of prognoses: some patients experience little to very mental retardation and can reach regular age-appropriate milestones. Others may experience severe mental retardation and neuromuscular side effects.
This syndrome is characterised by typical facial appearance, slight build, thin and translucent skin, severely adducted thumbs, arachnodactyly, club feet, joint instability, facial clefting and bleeding disorders, as well as heart, kidney or intestinal defects. Severe psychomotor and developmental delay and decreased muscle tone may also be present during infancy. Cognitive development during childhood is normal.
Microcephaly is a disorder in which the circumference of the head is smaller than average for the person's age and gender. Most children with microcephaly also have a smaller than typical brain and intellectual disability. Some of the most common signs and symptoms associated with microcephaly are seizures, poor feeding, high pitched cry, intellectual disability, developmental delay, and increased movement of arms and legs.
Fetal trimethadione syndrome is characterized by the following major symptoms as a result of the teratogenic characteristics of trimethadione.
- Cranial and facial abnormalities which include; microcephaly, midfacial flattening, V-shaped eyebrows and a short nose
- Cardiovascular abnormalities
- Absent kidney and ureter
- Meningocele, a birth defect of the spine
- Omphalocele, a birth defect where portions of the abdominal contents project into the umbilical cord
- A in mental and physical development