Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The signs and symptoms of TTP may at first be subtle and nonspecific. Many people experience an influenza-like or diarrheal illness before developing TTP. Neurological symptoms are very common and vary greatly in severity. Frequently reported symptoms include feeling very tired, confusion, and headaches. Seizures and symptoms similar to those of a stroke can also be seen.
As TTP progresses, blood clots form within small blood vessels (microvasculature), and platelets (clotting cells) are consumed. As a result, bruising, and rarely bleeding can occur. The bruising often takes the form of purpura, while the most common site of bleeding, if it occurs, is from the nose or gums. Larger bruises (ecchymoses) may also develop.
The classic presentation of TTP includes a constellation of five medical signs which classically support the clinical diagnosis of TTP, although it is unusual for patients to present with all 5 symptoms. The pentad includes:
- Fever
- Changes in mental status
- Thrombocytopenia
- Reduced kidney function
- Haemolytic anaemia (microangiopathic hemolytic anemia).
High blood pressure (hypertension) may be found on examination.
The clinical presentation of TMA, although dependent on the type, typically includes: fever, microangiopathic hemolytic anemia (see schistocytes in a blood smear), renal failure, thrombocytopenia and neurological manifestations. Generally, renal complications are particularly predominant with Shiga-toxin-associated hemolytic uremic syndrome (STx-HUS) and atypical HUS, whereas neurologic complications are more likely with TTP. Individuals with milder forms of TTP may have recurrent symptomatic episodes, including seizures and vision loss. With more threatening cases of TMA, and also as the condition progresses without treatment, multi-organ failure or injury is also possible, as the hyaline thrombi can spread to and affect the brain, kidneys, heart, liver, and other major organs.
Thrombotic thrombocytopenic purpura (TTP) is a rare disorder of the blood-coagulation system, causing extensive microscopic clots to form in the small blood vessels throughout the body, resulting in low platelet counts. These small blood clots, called thrombi, can damage many organs including the kidneys, heart, brain, and nervous system. In the era before effective treatment with plasma exchange, the fatality rate was about 90%. With plasma exchange, this has dropped to 10% at six months. Because the disease generally results from antibodies that activate the immune system to inhibit the ADAMTS13 enzyme, agents that suppress the immune system, such as glucocorticoids, rituximab, cyclophosphamide, vincristine, or ciclosporin, may also be used if a relapse or recurrence follows plasma exchange. Platelets are not transfused unless the patient has a life-threatening bleed, since the transfused platelets would also quickly be consumed by thrombi formation, leading to a minimal increase in circulating platelets.
Most cases of TTP arise from autoantibody-mediated inhibition of the enzyme ADAMTS13, a metalloprotease responsible for cleaving large multimers of von Willebrand factor (vWF) into smaller units. The increase in circulating multimers of vWF increases platelet adhesion to areas of endothelial injury, particularly where arterioles and capillaries meet, which in turn results in the formation of small platelet clots called thrombi. As platelets are used up in the formation of thrombi, this then leads to a decrease in the number of overall circulating platelets, which may then cause life-threatening bleeds. The reason why the antibodies form is generally unknown for most patients, though it can be associated with some medications and autoimmune diseases such as HIV and Lupus, as well as pregnancy.
A rarer form of TTP, called Upshaw–Schulman syndrome, or "Inherited TTP," results from an autosomal recessive gene that leads to ADAMTS13 dysfunction from the time of birth, resulting in persisting large vWF multimers, which in turn results in the formation of thrombi (small platelet clots).
Red blood cells passing the microscopic clots are subjected to shear stress, which damages their membranes, leading to rupture of red blood cells within blood vessels, which in turn leads to anaemia and schistocyte formation. The presence of these blood clots in the small blood vessels reduces blood flow to organs resulting in cellular injury and end organ damage. Current therapy is based on support and plasmapheresis to reduce circulating antibodies against ADAMTS13 and replenish blood levels of the enzyme.
Thrombotic microangiopathy (TMA) is a pathology that results in thrombosis in capillaries and arterioles, due to an endothelial injury. It may be seen in association with thrombocytopenia, anemia, purpura and renal failure.
The classic TMAs are hemolytic uremic syndrome and thrombotic thrombocytopenic purpura. Other conditions with TMA include atypical hemolytic uremic syndrome, disseminated intravascular coagulation, scleroderma renal crisis, malignant hypertension,
antiphospholipid antibody syndrome, and drug toxicities, e.g. calcineurin inhibitor toxicity.
Clinical signs and symptoms of complement-mediated TMA can include abdominal pain, confusion, fatigue, edema (swelling), nausea/vomiting and diarrhea. aHUS often presents with malaise and fatigue, as well as microangiopathic anemia. However, severe abdominal pain and bloody diarrhea are unusual. Laboratory tests may also reveal low levels of platelets (cells in the blood that aid in clotting), elevated lactate dehydrogenase (LDH, a chemical released from damaged cells, and which is therefore a marker of cellular damage), decreased haptoglobin (indicative of the breakdown of red blood cells), anemia (low red blood cell count)/schistocytes (damaged red blood cells), elevated creatinine (indicative of kidney dysfunction), and proteinuria (indicative of kidney injury). Patients with aHUS often present with an abrupt onset of systemic signs and symptoms such as acute kidney failure, hypertension (high blood pressure), myocardial infarction (heart attack), stroke, lung complications, pancreatitis (inflammation of the pancreas), liver necrosis (death of liver cells or tissue), encephalopathy (brain dysfunction), seizure, or coma. Failure of neurologic, cardiac, kidney, and gastrointestinal (GI) organs, as well as death, can occur unpredictably at any time, either very quickly or following prolonged symptomatic or asymptomatic disease progression. For example, approximately 1 in 6 patients with aHUS initially will present with proteinuria or hematuria without acute kidney failure. Patients who survive the presenting signs and symptoms endure a chronic thrombotic and inflammatory state, which puts many of them at lifelong elevated risk of sudden blood clotting, kidney failure, other severe complications and premature death.
The presentation of TTP is variable. The initial symptoms, which force the patient to medical care, are often the consequence of lower platelet counts like purpura (present in 90% of patients), ecchymosis and hematoma. Patients may also report signs and symptoms as a result of (microangiopathic) hemolytic anemia, such as (dark) beer-brown urine, (mild) jaundice, fatigue and pallor. Cerebral symptoms of various degree are present in many patients, including headache, paresis, speech disorder, visual problems, seizures and disturbance of consciousness up to coma. The symptoms can fluctuate so that they may only be temporarily present but may reappear again later in the TTP episode. Other unspecific symptoms are general malaise, abdominal, joint and muscle pain. Severe manifestations of heart or lung involvements are rare, although affections are not seldom measurable (such as ECG-changes).
Symptoms may differ greatly, as apparently modifiers control to some degree the amount of FVII that is produced. Some affected individuals have few or no symptoms while others may experience life-threatening bleeding. Typically this bleeding disorder manifests itself as a tendency to easy bruising, nose bleeding, heavy and prolonged menstruation, and excessive bleeding after dental or surgical interventions. Newborns may bleed in the head, from the umbilicus, or excessively after circumcision. Other bleeding can be encountered in the gut, in muscles or joints, or the brain. Hematuria may occur.
While in congenital disease symptoms may be present at birth or show up later, in patients with acquired FVII deficiency symptoms typically show up in later life.
About 3-4% of patients with FVII deficiency may also experience thrombotic episodes.
Atypical hemolytic uremic syndrome (aHUS) is an extremely rare, life-threatening, progressive disease that frequently has a genetic component. In most cases it is caused by chronic, uncontrolled activation of the complement system, a branch of the body’s immune system that destroys and removes foreign particles. The disease affects both children and adults and is characterized by systemic thrombotic microangiopathy (TMA), the formation of blood clots in small blood vessels throughout the body, which can lead to stroke, heart attack, kidney failure, and death. The complement system activation may be due to mutations in the complement regulatory proteins (factor H, factor I, or membrane cofactor protein), or is occasionally due to acquired neutralizing autoantibody inhibitors of these complement system components, for example anti–factor H antibodies. Despite the use of supportive care, historically an estimated 33–40% of patients died or developed end-stage renal disease (ESRD) with the first clinical bout of aHUS. Including subsequent relapses, a total of approximately two-thirds (65%) of patients died, required dialysis, or had permanent renal damage within the first year after diagnosis despite plasma exchange or plasma infusion (PE/PI).
In medicine (hematology), bleeding diathesis (h(a)emorrhagic diathesis) is an unusual susceptibility to bleed (hemorrhage) mostly due to hypocoagulability, in turn caused by a coagulopathy (a defect in the system of coagulation). Several types are distinguished, ranging from mild to lethal. Also, bleeding diathesis can be caused by thinning of the skin or impaired wound healing.
While there are several possible causes, they generally result in excessive bleeding and a lack of clotting.
Upshaw–Schulman syndrome (USS) is the recessively inherited form of thrombotic thrombocytopenic purpura (TTP), a rare and complex blood coagulation disease. USS is caused by the absence of the ADAMTS13 protease resulting in the persistence of ultra large von Willebrand factor multimers (ULVWF), causing episodes of acute thrombotic microangiopathy with disseminated multiple small vessel obstructions. These obstructions deprive downstream tissues from blood and oxygen, which can result in tissue damage and death. The presentation of an acute USS episode is variable but usually associated with thrombocytopenia, microangiopathic hemolytic anemia (MAHA) with schistocytes on the peripheral blood smear, fever and signs of ischemic organ damage in the brain, kidney and heart.
STEC-HUS occurs after ingestion of a strain of bacteria expressing Shiga toxin(s), usually types of "E. coli", that expresses verotoxin (also called Shiga-like toxin). "E. coli" can produce stx1 and/or stx2 Shiga toxins, the latter being more dangerous and a combination of both toxins in certain ratios is usually associated with HUS. These Shiga toxins bind GB3 receptors, globotriaosylceramide, which are present in renal tissue more than any other tissue and are also found in central nervous system neurons and other tissue. Children have more GB3 receptors than adults which may be why children are more susceptible to HUS. Cattle, swine, deer, and other mammals do not have GB3 receptors, but can be asymptomatic carriers of Shiga toxin-producing bacteria. Some humans can also be asymptomatic carriers. Once the bacteria colonizes, diarrhea followed by bloody diarrhea, hemorrhagic colitis, typically follows. HUS develops about 5–10 days after onset of diarrhea, with decreased urine output (oliguria), blood in the urine (hematuria), kidney failure, thrombocytopenia (low levels of platelets) and destruction of red blood cells (microangiopathic hemolytic anemia). Hypertension is common. In some cases, there are prominent neurologic changes.
Patients with HUS commonly exhibit the signs and symptoms of thrombotic microangiopathy (TMA), which can include abdominal pain, low platelet count, elevated lactate dehydrogenase LDH, a chemical released from damaged cells, and which is therefore a marker of cellular damage) decreased haptoglobin (indicative of the breakdown of red blood cells) anemia (low red blood cell count)/schistocytes (damaged red blood cells), elevated creatinine (a protein waste product generated by muscle metabolism and eliminated renally, proteinuria (indicative of kidney injury), confusion, fatigue, edema (swelling), nausea/vomiting, and diarrhea. Additionally, patients with aHUS typically present with an abrupt onset of systemic signs and symptoms such as acute kidney failure, hypertension (high blood pressure), myocardial infarction (heart attack), stroke, lung complications, pancreatitis (inflammation of the pancreas), liver necrosis (death of liver cells or tissue), encephalopathy (brain dysfunction), seizure, and coma. Failure of neurologic, cardiac, renal, and gastrointestinal (GI) organs, as well as death, can occur unpredictably at any time, either very quickly or following prolonged symptomatic or asymptomatic disease progression.
Factor VII deficiency is a bleeding disorder characterized by a lack in the production of Factor VII (FVII) (proconvertin), a protein that causes blood to clot in the coagulation cascade. After a trauma factor VII initiates the process of coagulation in conjunction with tissue factor (TF/factor III) in the extrinsic pathway.
The condition may be inherited or acquired. It is the most common of the rare congenital coagulation disorders.
There are various symptoms that are presented and are typically associated to a specific site that they appear at. Hypoprothrombinemia is characterized by a poor blood clotting function of prothrombin. Some symptoms are presented as severe, while others are mild, meaning that blood clotting is slower than normal. Areas that are usually affected are muscles, joints, and the brain, however, these sites are more uncommon.
The most common symptoms include:
1. Easy bruising
2. Oral mucosal bleeding - Bleeding of the membrane mucus lining inside of the mouth.
3. Soft tissue bleeding.
4. Hemarthrosis - Bleeding in joint spaces.
5. Epistaxis - Acute hemorrhages from areas of the nasal cavity, nostrils, or nasopharynx.
6. Women with this deficiency experience menorrhagia: prolonged, abnormal heavy menstrual bleeding. This is typically a symptom of the disorder when severe blood loss occurs.
Other reported symptoms that are related to the condition:
1. Prolonged periods of bleeding due to surgery, injury, or post birth.
2. Melena - Associated with acute gastrointestinal bleeding, dark black, tarry feces.
3. Hematochezia - Lower gastrointestinal bleeding, passage of fresh, bright red blood through the anus secreted in or with stools. If associated with upper gastrointestinal bleeding, suggestive of a more life-threatening issue.
Type I: Severe hemorrhages are indicators of a more severe prothrombin deficiency that account for muscle hematomas, intracranial bleeding, postoperative bleeding, and umbilical cord hemorrhage, which may also occur depending on the severity, respectively.
Type II: Symptoms are usually more capricious, but can include a variety of the symptoms described previously. Less severe cases of the disorder typically do not involve spontaneous bleeding.
Warfarin-induced skin necrosis (or, more generally, Anticoagulant-induced skin necrosis) is a condition in which skin and subcutaneous tissue necrosis (tissue death) occurs due to acquired protein C deficiency following treatment with anti-vitamin K anticoagulants (4-hydroxycoumarins, such as warfarin).
Warfarin necrosis is a rare but severe complication of treatment with warfarin or related anticoagulants. The typical patient appears to be an obese, middle aged woman (median age 54 years, male to female ratio 1:3). This drug eruption usually occurs between the third and tenth days of therapy with warfarin derivatives. The first symptoms are pain and redness in the affected area. As they progress, lesions develop a sharp border and become petechial, then hard and purpuric. They may then resolve or progress to form large, irregular, bloody bullae with eventual necrosis and slow-healing eschar formation. Favored sites are breasts, thighs, buttocks and penis, all areas with subcutaneous fat. In rare cases, the fascia and muscle are involved.
Development of the syndrome is associated with the use of large loading doses at the start of treatment.
The various types of vWD present with varying degrees of bleeding tendency, usually in the form of easy bruising, nosebleeds, and bleeding gums. Women may experience heavy menstrual periods and blood loss during childbirth.
Severe internal bleeding and bleeding into joints are uncommon in all but the most severe type, vWD type 3.
Type 1 vWD (60-80% of all vWD cases) is a quantitative defect which is heterozygous for the defective gene. It can arise from failure to secrete vWF into the circulation or from vWF being cleared more quickly than normal. Decreased levels of vWF are detected at 20-50% of normal, i.e. 20-50 IU.
Many patients are asymptomatic or may have mild symptoms and not have clearly impaired clotting, which might suggest a bleeding disorder. Often, the discovery of vWD occurs incidentally to other medical procedures requiring a blood work-up. Most cases of type 1 vWD are never diagnosed due to the asymptomatic or mild presentation of type I and most people usually end up leading a normal life free of complications, with many being unaware that they have the disorder.
Trouble may, however, arise in some patients in the form of bleeding following surgery (including dental procedures), noticeable easy bruising, or menorrhagia (heavy menstrual periods). The minority of cases of type 1 may present with severe hemorrhagic symptoms.
Hemolytic-uremic syndrome (or haemolytic-uraemic syndrome), abbreviated HUS, is a disease characterized by a triad of hemolytic anemia (anemia caused by destruction of red blood cells), acute kidney failure (uremia), and a low platelet count (thrombocytopenia). It predominantly, but not exclusively, affects children. Most cases are preceded by an episode of infectious, sometimes bloody, diarrhea acquired as a foodborne illness or from a contaminated water supply caused by , other non-O157:H7 "E. coli" serotypes, "Shigella", and "Campylobacter". A variety of viruses have also been implicated as a causative agent. It is now the most common cause of acquired acute renal failure in childhood. It is a medical emergency and carries a 5–10% mortality rate; of the remainder, the majority recover without major consequences, approximately 30% suffer residual renal injury. The primary target appears to be the vascular endothelial cell. This may explain the pathogenesis of HUS, in which a characteristic renal lesion is capillary microangiopathy.
HUS was first defined as a syndrome in 1955. The more common form of the disease, Shiga-like toxin-producing "E. coli" HUS (STEC-HUS), is triggered by the infectious agent "E. coli" O157:H7, and several other non-O157:H7 "E. coli" serotypes. Certain Shiga toxin-secreting strains of "Shigella dysenteriae" can also cause HUS. Approximately 5% of cases are classified as pneumococcal HUS, which results from infection by "Streptococcus pneumoniae", the agent that causes traditional lobar pneumonia. There is also a rare, chronic, and severe form known as atypical hemolytic uremic syndrome (aHUS), which is caused by genetic defects resulting in chronic, uncontrolled complement activation. Both STEC-HUS and aHUS cause endothelial damage, leukocyte activation, platelet activation, and widespread inflammation and multiple thromboses in the small blood vessels, a condition known as systemic thrombotic microangiopathy (TMA), which leads to thrombotic events as well as organ damage/failure and death.
Factor XII deficiency (also Hageman factor deficiency) is a deficiency in the production of factor XII (FXII), a plasma glycoprotein and clotting factor that participates in the coagulation cascade and activates factor XI. FXII appears to be not essential for blood clotting, as individuals with this condition are usually asymptomatic and form blood clots in vivo. FXII deficiency tends to be identified during presurgical laboratory screening for bleeding disorders.
The condition can be inherited or acquired.
While it is indicated that people with FXII deficiency are generally asymptomatic, studies in women with recurrent miscarriages suggest an association with FXII deficiency.
The condition is of importance in the differential diagnosis to other bleeding disorders, specifically the hemophilias: hemophilia A with a deficiency in factor VIII or antihemophilic globulin, hemophilia B with a deficiency in factor IX (Christmas disease), and hemophilia C with a deficiency in factor XI. Other rare forms of bleeding disorders are also in the differential diagnosis.
There is concern that individuals with FXII deficiency are more prone to thrombophilic disease, however, this is at variance with a long term study from Switzerland.
The "presentation" (signs/symptoms) of an individual with platelet storage pool deficiency is as follows:
The most common conditions associated with thrombophilia are deep vein thrombosis (DVT) and pulmonary embolism (PE), which are referred to collectively as venous thromboembolism (VTE). DVT usually occurs in the legs, and is characterized by pain, swelling and redness of the limb. It may lead to long-term swelling and heaviness due to damage to valves in the veins. The clot may also break off and migrate (embolize) to arteries in the lungs. Depending on the size and the location of the clot, this may lead to sudden-onset shortness of breath, chest pain, palpitations and may be complicated by collapse, shock and cardiac arrest.
Venous thrombosis may also occur in more unusual places: in the veins of the brain, liver (portal vein thrombosis and hepatic vein thrombosis), mesenteric vein, kidney (renal vein thrombosis) and the veins of the arms. Whether thrombophilia also increases the risk of arterial thrombosis (which is the underlying cause of heart attacks and strokes) is less well established.
Thrombophilia has been linked to recurrent miscarriage, and possibly various complications of pregnancy such as intrauterine growth restriction, stillbirth, severe pre-eclampsia and abruptio placentae.
Protein C deficiency may cause purpura fulminans, a severe clotting disorder in the newborn that leads to both tissue death and bleeding into the skin and other organs. The condition has also been described in adults. Protein C and protein S deficiency have also been associated with an increased risk of skin necrosis on commencing anticoagulant treatment with warfarin or related drugs.
Platelet storage pool deficiency is a type of coagulopathy characterized by defects in the granules in platelets, particularly a lack of granular non-metabolic ADP. Individuals with ADP deficient "storage pool disease" present a prolonged bleeding time due to impaired aggregation response to fibrillar collagen.
Many conditions mimic or may be mistaken for warfarin necrosis, including pyoderma gangrenosum or necrotizing fasciitis. Warfarin necrosis is also different from another drug eruption associated with warfarin, purple toe syndrome, which usually occurs three to eight weeks after the start of anticoagulation therapy. No report has described this disorder in the immediate postpartum period in patients with protein S deficiency.
The following symptoms (signs) are consistent with complement deficiency in general: