Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A tumor compressing the facial nerve anywhere along its complex pathway can result in facial paralysis. Common culprits are facial neuromas, congenital cholesteatomas, hemangiomas, acoustic neuromas, parotid gland neoplasms, or metastases of other tumours.
Often, since facial neoplasms have such an intimate relationship with the facial nerve, removing tumors in this region becomes perplexing as the physician is unsure how to manage the tumor without causing even more palsy. Typically, benign tumors should be removed in a fashion that preserves the facial nerve, while malignant tumors should always be resected along with large areas of tissue around them, including the facial nerve. While this will inevitably lead to heightened paralysis, safe removal of a malignant neoplasm is worth the often treatable palsy that follows. In the best case scenario, paralysis can be corrected with techniques including hypoglossal-facial nerve anastomosis, end-to-end nerve repair, cross facial nerve grafting, or muscle transfer/transposition techniques, such as the gracilis free muscle transfer.
Patients with facial nerve paralysis resulting from tumours usually present with a progressive, twitching paralysis, other neurological signs, or a recurrent Bell's palsy-type presentation.
The latter should always be suspicious, as Bell's palsy should not recur. A chronically discharging ear must be treated as a cholesteatoma until proven otherwise; hence, there must be immediate surgical exploration. Computed tomography (CT) or magnetic resonance (MR) imaging should be used to identify the location of the tumour, and it should be managed accordingly.
Other neoplastic causes include leptomeningeal carcinomatosis.
Similarly to vision loss, hearing loss can vary from full or partial inability to detect some or all frequencies of sound which can typically be heard by members of their species. For humans, this range is approximately 20 Hz to 20 kHz at ~6.5 dB, although a 10 dB correction is often allowed for the elderly. Primary causes of hearing loss due to an impaired sensory system include long-term exposure to environmental noise, which can damage the mechanoreceptors responsible for receiving sound vibrations, as well as multiple diseases, such as HIV or meningitis, which damage the cochlea and auditory nerve, respectively.
Hearing loss may be gradual or sudden. Hearing loss may be very mild, resulting in minor difficulties with conversation, or as severe as complete deafness. The speed with which hearing loss occurs may give clues as to the cause. If hearing loss is sudden, it may be from trauma or a problem with blood circulation. A gradual onset is suggestive of other causes such as aging or a tumor. If you also have other associated neurological problems, such as tinnitus or vertigo, it may indicate a problem with the nerves in the ear or brain. Hearing loss may be unilateral or bilateral. Unilateral hearing loss is most often associated with conductive causes, trauma, and acoustic neuromas. Pain in the ear is associated with ear infections, trauma, and obstruction in the canal.
Physical trauma, especially fractures of the temporal bone, may also cause acute facial nerve paralysis. Understandably, the likelihood of facial paralysis after trauma depends on the location of the trauma. Most commonly, facial paralysis follows temporal bone fractures, though the likelihood depends on the type of fracture.
"Transverse fractures" in the horizontal plane present the highest likelihood of facial paralysis (40-50%). Patients may also present with blood behind the tympanic membrane, sensory deafness, and vertigo; the latter two symptoms due to damage to vestibulocochlear nerve and the inner ear. "Longitudinal fracture" in the vertical plane present a lower likelihood of paralysis (20%). Patients may present with blood coming out of the external auditory meatus), tympanic membrane tear, fracture of external auditory canal, and conductive hearing loss. In patients with mild injuries, management is the same as with Bell's palsy – protect the eyes and wait. In patients with severe injury, progress is followed with nerve conduction studies. If nerve conduction studies show a large (>90%) change in nerve conduction, the nerve should be decompressed. The facial paralysis can follow immediately the trauma due to direct damage to the facial nerve, in such cases a surgical treatment may be attempted. In other cases the facial paralysis can occur a long time after the trauma due to oedema and inflammation. In those cases steroids can be a good help.
Sensorineural hearing loss (SNHL) is a type of hearing loss, or deafness, in which the root cause lies in the inner ear or sensory organ (cochlea and associated structures) or the vestibulocochlear nerve (cranial nerve VIII) or neural part. SNHL accounts for about 90% of hearing loss reported. SNHL is generally permanent and can be mild, moderate, severe, profound, or total. Various other descriptors can be used such as high frequency, low frequency, U-shaped, notched, peaked or flat depending on the shape of the audiogram, the measure of hearing.
"Sensory" hearing loss often occurs as a consequence of damaged or deficient cochlear hair cells. Hair cells may be abnormal at birth, or damaged during the lifetime of an individual. There are both external causes of damage, including noise trauma, infection and ototoxic drugs, as well as intrinsic causes, including genetic mutations. A common cause or exacerbating factor in sensory hearing loss is prolonged exposure to environmental noise, for example, being in a loud workplace without wearing protection, or having headphones set to high volumes for a long period. Exposure to a very loud noise such as a bomb blast can cause noise-induced hearing loss.
"Neural", or 'retrocochlear', hearing loss occurs because of damage to the cochlear nerve (CVIII). This damage may affect the initiation of the nerve impulse in the cochlear nerve or the transmission of the nerve impulse along the nerve into the brainstem.
Most cases of SNHL present with a gradual deterioration of hearing thresholds occurring over years to decades. In some the loss may eventually affect large portions of the frequency range. It may be accompanied by other symptoms such as ringing in the ears (tinnitus), dizziness or lightheadedness (vertigo). SNHL can be genetically inherited or acquired as a result from external causes like noise or disease. It may be congenital (present at birth) or develop later in life. The most common kind of sensorineural hearing loss is age-related (presbycusis), followed by noise-induced hearing loss (NIHL).
Frequent symptoms of SNHL are loss of acuity in distinguishing foreground voices against noisy backgrounds, difficulty understanding on the telephone, some kinds of sounds seeming excessively loud or shrill (recruitment), difficulty understanding some parts of speech (fricatives and sibilants), loss of directionality of sound, esp. high frequency sounds, perception that people mumble when speaking, and difficulty understanding speech. Similar symptoms are also associated with other kinds of hearing loss; audiometry or other diagnostic tests are necessary to distinguish sensorineural hearing loss.
Identification of sensorineural hearing loss is usually made by performing a pure tone audiometry (an audiogram) in which bone conduction thresholds are measured. Tympanometry and speech audiometry may be helpful. Testing is performed by an audiologist.
There is no proven or recommended treatment or cure for SNHL; management of hearing loss is usually by hearing strategies and hearing aid. In cases of profound or total deafness, a cochlear implant is a specialised hearing aid which may restore a functional level of hearing. SNHL is at least partially preventable by avoiding environmental noise, ototoxic chemicals and drugs, and head trauma, and treating or inoculating against certain triggering diseases and conditions like meningitis.
The facial nerve is the seventh of 12 cranial nerves. This cranial nerve controls the muscles in the face. Facial nerve palsy is more abundant in older adults than in children and is said to affect 15-40 out of 100,000 people per year. This disease comes in many forms which include congenital, infectious, traumatic, neoplastic, or idiopathic. The most common cause of this cranial nerve damage is Bell's palsy (idiopathic facial palsy) which is a paralysis of the facial nerve. Although Bell's palsy is more prominent in adults it seems to be found in those younger than 20 or older than 60 years of age. Bell's Palsy is thought to occur by an infection of the herpes virus which may cause demyelination and has been found in patients with facial nerve palsy. Symptoms include flattening of the forehead, sagging of the eyebrow, and difficulty closing the eye and the mouth on the side of the face that is affected. The inability to close the mouth causes problems in feeding and speech. It also causes lack of taste, acrimation, and sialorrhea.
The use of steroids can help in the treatment of Bell's Palsy. If in the early stages, steroids can increase the likelihood of a full recovery. This treatment is used mainly in adults. The use of steroids in children has not been proven to work because they seem to recover completely with or without them. Children also tend to have better recovery rates than older adults. Recovery rate also depends on the cause of the facial nerve palsy (e.g. infections, perinatal injury, congenital dysplastic). If the palsy is more severe patients should seek steroids or surgical procedures. Facial nerve palsy may be the indication of a severe condition and when diagnosed a full clinical history and examination are recommended.
Although rare, facial nerve palsy has also been found in patients with HIV seroconversion. Symptoms found include headaches (bitemporal or occipital), the inability to close the eyes or mouth, and may cause the reduction of taste. Few cases of bilateral facial nerve palsy have been reported and is said to only effect 1 in every 5 million per year.
Ageusia is the loss of taste, particularly the inability to detect sweetness, sourness, bitterness, saltiness, and umami (meaning "pleasant/savory taste"). It is sometimes confused with anosmia (a loss of the sense of smell). Because the tongue can only indicate texture and differentiate between sweet, sour, bitter, salty, and umami, most of what is perceived as the sense of taste is actually derived from smell. True ageusia is relatively rare compared to hypogeusia (a partial loss of taste) and dysgeusia (a distortion or alteration of taste).
Tissue damage to the nerves that support the tongue can cause ageusia, especially damage to the lingual nerve and the glossopharyngeal nerve. The lingual nerve passes taste for the front two-thirds of the tongue and the glossopharyngeal nerve passes taste for the back third of the tongue. The lingual nerve can also be damaged during otologic surgery, causing a feeling of metal taste.
Taste loss can vary from true aguesia, a complete loss of taste, to hypogeusia, a partial loss of taste, to dysgeusia, a distortion or alteration of taste. The primary cause of ageusia involves damage to the lingual nerve, which receives the stimuli from taste buds for the front two-thirds of the tongue, or the glossopharyngeal nerve, which acts similarly for the back third. Damage may be due to neurological disorders, such as Bell’s palsy or multiple sclerosis, as well as infectious diseases such as meningoencephalopathy. Other causes include a vitamin B deficiency, as well as taste bud death due to acidic/spicy foods, radiation, and/or tobacco use.
Due to variations in study designs, data on the course of tinnitus showed few consistent results. Generally the prevalence increased with age in adults, whereas the ratings of annoyance decreased with duration.
Vestibular schwannoma patients sometimes complain of a feeling that their ear is plugged or "full".
Persistent tinnitus may cause anxiety and depression. Tinnitus annoyance is more strongly associated with psychological condition than loudness or frequency range. Psychological problems such as depression, anxiety, sleep disturbances and concentration difficulties are common in those with strongly annoying tinnitus. 45% of people with tinnitus have an anxiety disorder at some time in their life.
Psychological research has looked at the tinnitus distress reaction (TDR) to account for differences in tinnitus severity. These findings suggest that at the initial perception of tinnitus, conditioning links tinnitus with negative emotions, such as fear and anxiety from unpleasant stimuli at the time. This enhances activity in the limbic system and autonomic nervous system, thus increasing tinnitus awareness and annoyance.
This is an inherited disease. The primary form of hearing loss in otosclerosis is conductive hearing loss (CHL) whereby sounds reach the ear drum but are incompletely transferred via the ossicular chain in the middle ear, and thus partly fail to reach the inner ear (cochlea). This usually will begin in one ear but will eventually affect both ears with a variable course. On audiometry, the hearing loss is characteristically low-frequency, with higher frequencies being affected later.
Sensorineural hearing loss (SNHL) has also been noted in patients with otosclerosis; this is usually a high-frequency loss, and usually manifests late in the disease. The causal link between otosclerosis and SNHL remains controversial. Over the past century, leading otologists and neurotologic researchers have argued whether the finding of SNHL late in the course of otosclerosis is due to otosclerosis or simply to typical presbycusis.
Most patients with otosclerosis notice tinnitus (head noise) to some degree. The amount of tinnitus is not necessarily related to the degree or type of hearing impairment. Tinnitus develops due to irritation of the delicate nerve endings in the inner ear. Since the nerve carries sound, this irritation is manifested as ringing, roaring or buzzing. It is usually worse when the patient is fatigued, nervous or in a quiet environment.
Unilateral tinnitus (ringing or hissing in the ears) is also a hallmark symptom of acoustic neuroma. Not all patients with tinnitus have acoustic neuroma and not all AN patients have tinnitus. Most of them do however, both before and after treatment.
Since the inner ear is not directly accessible to instruments, identification is by patient report and audiometric testing. Of those who present to their doctor with sensorineural hearing loss, 90% report having diminished hearing, 57% report having plugged feeling in ear, and 49% report having ringing in ear (tinnitus). About half report vestibular (vertigo) problems.
For a detailed exposition of symptoms useful for screening, a self-assessment questionnaire was developed by the American Academy of Otolaryngology, called the Hearing Handicap Inventory for Adults (HHIA). It is a 25-question survey of subjective symptoms.
Cranial nerve disease is an impaired functioning of one of the twelve cranial nerves. Although it could theoretically be considered a mononeuropathy, it is not considered as such under MeSH.
It is possible for a disorder of more than one cranial nerve to occur at the same time, if a trauma occurs at a location where many cranial nerves run together, such as the jugular fossa. A brainstem lesion could also cause impaired functioning of multiple cranial nerves, but this condition would likely also be accompanied by distal motor impairment.
A neurological examination can test the functioning of individual cranial nerves, and detect specific impairments.
TTS imperceptibly gives way to PTS.
In addition to hearing loss, other external symptoms of an acoustic trauma can be:
- Tinnitus
- Some pain in the ear
- Hyperacusis
- Dizziness or vertigo; in the case of vestibular damages, in the inner-ear
Tumors within the nerve canaliculi initially present with unilateral sensorineural hearing loss, unilateral tinnitus, or disequilibrium (vertigo is rare, on account of the slow growth of neuromas). Speech discrimination out of proportion to hearing loss, difficulty talking on the telephone are frequent accompaniments. Tumors extending into the CPA will likely present with disequilibrium or ataxia depending on the amount of extension on the brainstem. With brainstem extension, midfacial and corneal hypesthesia, hydrocephalus, and other cranial neuropathies become more prevalent.
For example, involvement of CN V from a cerebellopontine mass lesion often results in loss of the ipsilateral (same side of the body) corneal reflex (involuntary blink).
Patients with larger tumours can develop Bruns nystagmus ('dancing eyes') due to compression of the flocculi.
The first symptom of noise-induced hearing loss is usually difficulty hearing a conversation against a noisy background. The effect of hearing loss on speech perception has two components. The first component is the loss of audibility, which is something like a decrease in overall volume. Modern hearing aids compensate this loss with amplification. However, difficulty in understanding speech represents selective frequency loss for which hearing aids and amplification do not help. This is known by different names such as “distortion,” “clarity loss,” and “Signal-to-Noise-Ratio (SNR)-loss.” Consonants, due to their higher frequency, seem to be lost first. For example, the letters “s” and “t” are the common letters that are difficult to hear for those with hearing loss due to them being our highest frequency sound in our language. Hearing loss can affect either one or both ears. When one ear is affected it causes problems with directional hearing. Directional hearing provides the ability to determine from which direction a sound came. Lacking this ability can cause confusion within individuals who have hearing loss in one ear.
Conductive hearing loss makes all sounds seem faint or muffled. The hearing loss is worse in low frequencies.
Congenital conductive hearing loss is usually identified through newborn hearing screening or may be identified because the baby has microtia or other facial abnormalities. Conductive hearing loss developing during childhood is usually due to otitis media with effusion and may present with speech and language delay or difficulty hearing. Later onset of conductive hearing loss may have an obvious cause such as an ear infection, trauma or upper respiratory tract infection or may have an insidious onset related to chronic middle ear disease, otosclerosis or a tumour of the naso-pharynx. Earwax is a very common cause of a conductive hearing loss which may present suddenly when water gets behind the wax and this blocks the ear canal.
Otosclerosis or otospongiosis is an abnormal growth of bone near the middle ear. It can result in hearing loss. The term otosclerosis is something of a misnomer. Much of the clinical course is characterised by lucent rather than sclerotic bony changes, hence it is also known as otospongiosis.
Sensory symptoms of small fiber neuropathy are highly variable. Common complaints include paresthesias, dysesthesias, and insensitivity to pain. "Paresthesias" are abnormal sensations. They are often described as numbness, burning, cold, prickling, pins and needles along with other symptoms. "Dysesthesias" are unpleasant sensations, either spontaneous or evoked. A light breeze, the feeling of clothes, or even a soft touch can cause pain.
Insensitivity to pain can be particular problem. One may be bleeding or have a skin injury without even knowing it.
Subsequent to diagnosis of sensorineural hearing loss, and differential diagnosis of retrocochlear or neural etiologies,
radiological assessment of the CPA is performed to assess the presence of anatomical retrocochlear lesions.
Like many polyneuropathies, the symptoms are length-dependent, starting in the longer nerves and progressively attack shorter nerves. This means that most often the symptoms start in the feet and progress upwards, and usually symptoms are more severe in the feet. Many patients have a widespread, length independent, or "patchy", presentation which is sporadic and can affect many nerves, including the trigeminal nerve or occipital nerve.
Patients with Fabry disease have isolated small fiber engagement, and can have a more widespread small fiber disruption.
Fluid accumulation is the most common cause of conductive hearing loss in the middle ear, especially in children. Major causes are ear infections or conditions that block the eustachian tube, such as allergies or tumors. Blocking of the eustachian tube leads to decreased pressure in the middle ear relative to the external ear, and this causes decreased motion of both the ossicles and the tympanic membrane.
- acute or serous otitis media
- otitis media with effusion or 'glue ear'
- Perforated eardrum
- Chronic suppurative otitis media (CSOM)
- Cholesteatoma
- Otosclerosis, abnormal growth of bone in or near the middle ear
- middle ear tumour
- ossicular discontinuity as a consequence of infection or temporal bone trauma
- Congenital malformation of the ossicles. This can be an isolated phenomenon or can occur as part of a syndrome where development of the 1st and 2nd branchial arches is seen such as in Goldenhar syndrome, Treacher Collins syndrome, branchio-oto-renal syndrome etc.
- Barotrauma unequal air pressures in the external and middle ear. This can temporarily occur, for example, by the environmental pressure changes as when shifting altitude, or inside a train going into a tunnel. It is managed by any of various methods of ear clearing manoeuvres to equalize the pressures, like swallowing, yawning, or the Valsalva manoeuvre. More severe barotrauma can lead to middle ear fluid or even permanent sensorineural hearing loss.
In hyperacusis, the symptoms are ear pain, annoyance, and general intolerance to many sounds that most people are unaffected by. Crying spells or panic attacks may result from the experience of hyperacusis. It may affect either or both ears. Hyperacusis can also be accompanied by tinnitus. Hyperacusis can result in anxiety, stress and phonophobia. Avoidant behaviour is often a response to prevent the effects of hyperacusis and this can include avoiding social situations.
Vertigo is a sensation of spinning while stationary. It is commonly associated with nausea or vomiting, unsteadiness (postural instability), falls, changes to a person's thoughts, and difficulties in walking. Recurrent episodes in those with vertigo are common and frequently impair the quality of life. Blurred vision, difficulty in speaking, a lowered level of consciousness, and hearing loss may also occur. The signs and symptoms of vertigo can present as a persistent (insidious) onset or an episodic (sudden) onset.
Persistent onset vertigo is characterized by symptoms lasting for longer than one day and is caused by degenerative changes that affect balance as people age. Naturally, the nerve conduction slows with aging and a decreased vibratory sensation is common.
Additionally, there is a degeneration of the ampulla and otolith organs with an increase in age. Persistent onset is commonly paired with central vertigo signs and symptoms.
The characteristics of an episodic onset vertigo is indicated by symptoms lasting for a smaller, more memorable amount of time, typically lasting for only seconds to minutes. Typically, episodic vertigo is correlated with peripheral symptoms and can be the result of but not limited to diabetic neuropathy or autoimmune disease.
Peripheral neuropathy may be classified according to the number and distribution of nerves affected (mononeuropathy, mononeuritis multiplex, or polyneuropathy), the type of nerve fiber predominantly affected (motor, sensory, autonomic), or the process affecting the nerves; e.g., inflammation (neuritis), compression (compression neuropathy), chemotherapy (chemotherapy-induced peripheral neuropathy).