Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Common relevant features of acrocephalosyndactyly are a high-arched palate, pseudomandibular prognathism (appearing as mandibular prognathism), a narrow palate, and crowding of the teeth.
Ectodermal dysplasia is characterized by absent sweat glands resulting in dry (hypohydrotic), often scale-like skin, sparse and usually coarse scalp hair that is often blonde, sparse eyebrows and eyelashes, and small brittle nails. In addition, abnormalities of ectodermal derivatives, neuroectodermal derivatives, and mesectodermal derivatives are often found. The ectodermal derivative abnormalities can affect the epidermis including mammary, pituitary and sweat glands, as well as hairs, dental enamel, nails, lens, and the internal ear. Neuroectodermal derivatives that can be affected include sensory placodes, cutaneous pigmental cells, and hair buds. Mesectodermal derivatives affected can include the dermis, hypodermis, dentin, head muscles and conjunctival cells, cervicofacial vascular endothelial cells, and part of the maxillofacial skeleton.
The hypohydrotic symptoms of ectodermal dysplasia described above are evidenced not only in the skin of affected individuals, but also in their phonation and voice production. Because the vocal folds may not be as hydrated as is necessary during the adduction phase of vocal fold vibration (due to lack of lubrication), a complete seal may not be accomplished between the folds and mucosal wave movement may be disrupted. This results in air escapement between the folds and the production of breathy voice, which often accompanies the skin abnormalities of ectodermal dysplasia.
There is much discrepancy in the literature regarding the exact nature of the facial clefting involved in EEC. Some authors claim that the clefting involved in EEC is always cleft lip +/- palate and use this marker as a means of distinguishing EEC from other syndromes, such as AEC syndrome (ankyloblepharon, ectodermal dysplasia, and clefting) in which other types of clefting are found. Other authors include cleft palate only (CPO) in conjunction with ectrodactyly and ectodermal dysplasia as sufficient for a diagnosis of EEC.
Two key features of AOS are aplasia cutis congenita with or without underlying bony defects and terminal transverse limb defects. Cutis aplasia congenita is defined as missing skin over any area of the body at birth; in AOS skin aplasia occurs at the vertex of the skull. The size of the lesion is variable and may range from solitary round hairless patches to complete exposure of the cranial contents. There are also varying degrees of terminal limb defects (for example, shortened digits) of the upper extremities, lower extremities, or both. Individuals with AOS may have mild growth deficiency, with height in the low-normal percentiles. The skin is frequently observed to have a mottled appearance (cutis marmorata telangiectatica congenita). Other congenital anomalies, including cardiovascular malformations, cleft lip and/or palate, abnormal renal system, and neurologic disorders manifesting as seizure disorders and developmental delay are sometimes observed. Variable defects in blood vessels have been described, including hypoplastic aortic arch, middle cerebral artery, pulmonary arteries. Other vascular abnormalities described in AOS include absent portal vein, portal sclerosis, arteriovenous malformations, abnormal umbilical veins, and dilated renal veins.
All acrocephalosyndactyly syndromes show some level of limb anomalies, so it can be hard to tell them apart. However, the typical hand deformities in patients with Apert Syndrome distinguish it from the other syndromes.
The hands in patients with Apert syndrome always show four common features:
1. a short thumb with radial deviation
2. complex syndactyly of the index, long and ring finger
3. symbrachyphalangism
4. simple syndactyly of the fourth webspace
The deformity of the space between the index finger and the thumb may be variable. Based on this first webspace, we can differentiate three different types of handdeformation:
- Type I: Also called a "spade hand". The most common and least severe type of deformation. The thumb shows radial deviation and clinodactyly, but is separated from the index finger. The index, long and ring finger are fused together in the distal interphalangeal joints and form a flat palm. During the embryonic stage, the fusion has no effect on the longitudinal growth of these fingers, so they have a normal length. In the fourth webspace, we always see a simple syndactyly, either complete or incomplete.
- Type II: Also called a "spoon" or "mitten" hand. This is a more serious anomaly since the thumb is fused to the index finger by simple complete or incomplete syndactyly. Only the distal phalanx of the thumb is not joined in the osseous union with the index finger and has a separate nail. Because the fusion of the digits is at the level of the distal interphalangeal joints, a concave palm is formed. Most of the time, we see complete syndactyly of the fourth webspace.
- Type III: Also called the "hoof" or "rosebud" hand. This is the most uncommon but also most severe form of hand deformity in Apert syndrome. There is a solid osseous or cartilaginous fusion of all digits with one long, conjoined nail. The thumb is turned inwards and it is often impossible to tell the fingers apart. Usually proper imaging of the hand is very difficult, due to overlap of bones, but physical examination alone is not enough to measure the severity of deformation
This is a very rare situation, in which the extra digit is on the ring, middle or index finger. Of these fingers, the index finger is most often affected, whereas the ring finger is rarely affected.
This type of polydactyly can be associated with syndactyly, cleft hand and several syndromes.
Polysyndactyly presents various degrees of syndactyly affecting fingers three and four.
Classification is performed by using x-ray imaging to see the bone structures.
Individuals affected by an ED syndrome frequently have abnormalities of the hair follicles. Scalp and body hair may be thin, sparse, and very light in color, even though beard growth in affected males may be normal. The hair may grow very slowly or sporadically and it may be excessively fragile, curly, or even twisted.
Clinical expressions of PPS are highly variable, but include the following:
- Limb findings: an extensive web running from behind the knee down to the heel (90%), malformed toenails, and webbed toes.
- Facial findings: cleft palate with or without cleft lip (75%), pits in the lower lip (40%), and fibrous bands in the mouth known as syngnathia (25%).
- Genital findings (50%): hypoplasia of the labia majora, malformation of the scrotum, and cryptorchidism.
Fingernails and toenails may be thick, abnormally shaped, discolored, ridged, slow-growing, or brittle. The cuticles may be prone to infections.
Cleidocranial dysostosis is a general skeletal condition so named from the collarbone (cleido-) and cranium deformities which people with it often have.
People with the condition usually present with a painless swelling in the area of the clavicles at 2–3 years of age. Common features are:
- Clavicles (collarbones) can be partly missing leaving only the medial part of the bone. In 10% cases, they are completely missing. If the collarbones are completely missing or reduced to small vestiges, this allows hypermobility of the shoulders including ability to touch the shoulders together in front of the chest. The defect is bilateral 80% of the time. Partial collarbones may cause nerve damage symptoms and therefore have to be removed by surgery.
- The mandible is prognathic due to hypoplasia of maxilla (micrognathism) and other facial bones.
- A soft spot or larger soft area in the top of the head where the fontanelle failed to close, or the fontanelle closes late.
- Bones and joints are underdeveloped. People are shorter and their frames are smaller than their siblings who do not have the condition.
- The permanent teeth include supernumerary teeth. Unless these supernumeraries are removed they will crowd the adult teeth in what already may be an underdeveloped jaw. If so, the supernumeraries will probably need to be removed to make space for the adult teeth. Up to 13 supernumarary teeth have been observed. Teeth may also be displaced. Cementum formation may be deficient.
- Failure of eruption of permanent teeth.
- Bossing (bulging) of the forehead.
- Open skull sutures, large fontanelles.
- Hypertelorism.
- Delayed ossification of bones forming symphysis pubis, producing a widened symphysis.
- Coxa vara can occur, limiting abduction and causing Trendelenburg gait.
- Short middle fifth phalanges, sometimes causing short and wide fingers.
- Vertebral abnormalities.
- On rare occasions, brachial plexus irritation can occur.
- Scoliosis, spina bifida and syringomyelia have also been described.
Other features are: parietal bossing, basilar invagination (atlantoaxial impaction), persistent metopic suture, abnormal ear structures with hearing loss, supernumerary ribs, hemivertebrae with spondylosis, small and high scapulae, hypoplasia of illiac bones, absence of the pubic bone, short / absent fibular bones, short / absent radial bones, hypoplastic terminal phalanges.
Syndactyly can be simple or complex.
- In simple syndactyly, adjacent fingers or toes are joined by soft tissue.
- In complex syndactyly, the bones of adjacent digits are fused. The kangaroo exhibits complex syndactyly.
Syndactyly can be complete or incomplete.
- In complete syndactyly, the skin is joined all the way to the tip of the involved digits.
- In incomplete syndactyly, the skin is only joined part of the distance to the tip of the involved digits.
Complex syndactyly occurs as part of a syndrome (such as Apert syndrome) and typically involves more digits than simple syndactyly.
Fenestrated syndactyly means the skin is joined for most of the digit but in a proximal area there is gap in the syndactyly with normal skin. This type of syndactyly is found in amniotic band syndrome.
Simple syndactyly can be full or partial, and is present at birth (congenital). In early human fetal development, webbing (syndactyly) of the toes and fingers is normal. At about 6 weeks of gestation, apoptosis takes place due to a protein named sonic hedgehog, also known as SHH, which dissolves the tissue between the fingers and toes, and the webbing disappears. In some fetuses, this process does not occur completely between all fingers or toes and some residual webbing remains.
Ectrodactyly, split hand, cleft hand, derived from the Greek "ektroma" (abortion) and "daktylos" (finger) involves the deficiency or absence of one or more central digits of the hand or foot and is also known as split hand/split foot malformation (SHFM). The hands and feet of people with ectrodactyly are often described as "claw-like" and may include only the thumb and one finger (usually either the little finger, ring finger, or a syndactyly of the two) with similar abnormalities of the feet.
It is a rare form of a congenital disorder in which the development of the hand is disturbed. It is a type I failure of formation – longitudinal arrest. The central ray of the hand is affected and usually appears without proximal deficiencies of nerves, vessels, tendons, muscles and bones in contrast to the radial and ulnar deficiencies. The cleft hand appears as a V-shaped cleft situated in the centre of the hand. The digits at the borders of the cleft might be syndactilyzed, and one or more digits can be absent. In most types, the thumb, ring finger and little finger are the less affected parts of the hand. The incidence of cleft hand varies from 1 in 90,000 to 1 in 10,000 births depending on the used classification. Cleft hand can appear unilateral or bilateral, and can appear isolated or associated with a syndrome.
Split hand/foot malformation (SHFM) is characterized by underdeveloped or absent central digital rays, clefts of hands and feet, and variable syndactyly of the remaining digits. SHFM is a heterogeneous condition caused by abnormalities at one of multiple loci, including SHFM1 (SHFM1 at 7q21-q22), SHFM2 (Xq26), SHFM3 (FBXW4/DACTYLIN at 10q24), SHFM4 (TP63 at 3q27), and SHFM5 (DLX1 and DLX 2 at 2q31). SHFM3 is unique in that it is caused by submicroscopic tandem chromosome duplications of FBXW4/DACTYLIN. SHFM3 is considered 'isolated' ectrodactyly and does not show a mutation of the tp63 gene.
Infants with this condition have disproportionately short arms and legs with extra folds of skin. Other signs of the disorder include a narrow chest, small ribs, underdeveloped lungs, and an enlarged head with a large forehead and prominent, wide-spaced eyes.
Thanatophoric dysplasia is a lethal skeletal dysplasia divided into two subtypes. Type I is characterized by extreme rhizomelia, bowed long bones, narrow thorax, a relatively large head, normal trunk length and absent cloverleaf skull. The spine shows platyspondyly, the cranium has a short base, and, frequently, the foramen magnum is decreased in size. The forehead is prominent, and hypertelorism and a saddle nose may be present. Hands and feet are normal, but fingers are short. Type II is characterized by short, straight long bones and cloverleaf skull.
It presents with typical telephone handled shaped long bones and a H-shaped vertebrae.
In the above brachydactyly syndromes, short digits are the most prominent of the anomalies, but in many other syndromes (Down syndrome, Rubinstein-Taybi syndrome, etc.), brachydactyly is a minor feature compared to the other anomalies or problems comprising the syndrome.
Mandibuloacral dysplasia is a rare autosomal recessive syndrome characterized by mandibular hypoplasia, delayed cranial suture closure, dysplastic clavicles, abbreviated and club-shaped terminal phalanges, acroosteolysis, atrophy of the skin of the hands and feet, and typical facial changes.
Types include:
This condition is normally discovered at birth. If other symptoms are present, a specific syndrome may be indicated. Diagnosis of a specific syndrome is based on family history, medical history, and a physical exam. Webbed toes are also known as "twin toes," "duck toes," "turkey toes" and "tiger toes."
Severity can vary. Most cases involve the second and third toes but any number of toes can be involved. In some cases the toes are joined part way while in some the webbing can extend right up to the nails. In some cases the entire toes, including the nails and bones, can be fused.
Prenatal and neonatal diagnosis of boomerang dysplasia includes several prominent features found in other osteochondrodysplasias, though the "boomerang" malformation seen in the long bones is the delineating factor.
Featured symptoms of boomerang dysplasia include: dwarfism (a lethal type of infantile dwarfism caused by systemic bone deformities), underossification (lack of bone formation) in the limbs, spine and ilium (pelvis); proliferation of multinucleated giant-cell chondrocytes (cells that produce cartilage and play a role in skeletal development - chondrocytes of this type are rarely found in osteochondrodysplasias), brachydactyly (shortened fingers) and (undersized, shortened bones).
The characteristic "boomerang" malformation presents intermittently among random absences of long bones throughout the skeleton, in affected individuals. For example, one individual may have an absent radius and fibula, with the "boomerang" formation found in both ulnas and tibias. Another patient may present "boomerang" femora, and an absent tibia.
Individuals affected by ischiopatellar dysplasia commonly have abnormalities of the patella and pelvic girdle, such as absent or delayed patellar and ischial ossification as well as infra-acetabular axe-cut notches. Patellae are typically absent or small in these individuals, when patellae are present they are small and laterally displaced or dislocated. In addition, abnormalities in other parts of their skeleton and dysmorphic features are common in those affected. Other features that have been identified in patients with ischiopatellar dysplasia include foot anomalies, specifically flat feet (pes planus), syndactylism of the toes, short fourth and fifth toes, and a large gap between the first and second toes, femur anomalies, cleft palate, and craniofacial dysmorphisms.
Nasodigitoacoustic syndrome is congenital and is characterized by a number of nasal, facial and cranial features. These include a broad and high, sometimes depressed nasal bridge (top of the nose, between the eyes) and a flattened nasal tip. This can give the nose a shortened, arch-like appearance. Hypertelorism (unusually wide-set eyes), prominent frontal bones and supraorbital ridge (the eyebrow ridge), bilateral epicanthic folds (an extra flap of skin over the eyelids), a broad forehead and an overall enlarged head circumference have also been observed. A bulging of the upper lip with an exaggerated cupid's bow shape, and maxillary hypoplasia (underdevelopment of the upper jaw) with retraction have also been reported.
Several anomalies affecting the digits (fingers and toes) have been observed with the syndrome. A broadening of the thumbs and big toes (halluces) was reported in two brothers. The broadening was apparent in all distal phalanges of the fingers, although the pinkies were unaffected yet appeared to be clinodactylic (warped, or bent toward the other fingers). Additional eports described this broadness of the thumbs and big toes, with brachydactyly (shortness) in the distal phalanges of the other digits except the pinkies in affected individuals. On X-rays of a two-year-old boy with the disorder, the brachydactyly was shown to be caused by shortening of epiphyses (joint-ends) of the distal phalanges. The broadness and brachydactyly of the big toes in particular may give them a stunted, rounded and stub-like appearance.
The auditory, or "acoustic" abnormalities observed with the syndrome include sensorineural hearing loss and hoarseness. Two affected Turkish brothers with a mild form of this hearing loss, and a hoarse voice were reported. A laryngoscopic examination of both brothers revealed swelling of the vocal cords, and a malformed epiglottis. Sensorineural-associated hearing impairment and hoarsness was also observed in a 10-year-old girl and her father, and in a number of other cases.
Other characteristics seen with the syndrome include developmental delay, growth retardation, pulmonary stenosis (an obstruction of blood-flow from the right ventricle of the heart to the pulmonary artery) with associated dyspnea (shortness of breath), and renal agenesis (failure of the kidneys to develop during the fetal period). Undescended testes, hyperactivity and aggressive behavior have also been noted.
Infants with type 1 thanatophoric dysplasia also have curved thigh bones, flattened bones of the spine (platyspondyly) and shortened thoracic ribs. Note: Prenatal ultra-sound images of the ribs sometimes appear asymmetrical when in fact they are not. In certain cases, this has caused a misdiagnosis of Osteogenisis Imperfecta (OI) type II.
An unusual head shape called kleeblattschädel ("cloverleaf skull") can be seen with type 2 thanatophoric dysplasia.
Ectrodactyly can be caused by various changes to 7q. When 7q is altered by a deletion or a translocation ectrodactyly can sometimes be associated with hearing loss. Ectrodactyly, or Split hand/split foot malformation (SHFM) type 1 is the only form of split hand/ malformation associated with sensorineural hearing loss.
Impossible Syndrome, or Chondrodysplasia situs inversus imperforate anus polydactyly, is a complex combination of human congenital malformations (birth defects).
The malformations include chondrodysplasia (improper growth of bone and cartilage), situs inversus totalis (chest and abdominal organs all a mirror image of normal), cleft larynx and epiglottis, hexadactyly (six digits) on hands and feet, diaphragmatic hernia, pancreatic abnormalities, kidney abnormal on one side and absent on the other side, micropenis and ambiguous genitalia, and imperforate anus.
Only one case of Impossible Syndrome has been reported; the infant was premature and stillborn.
In general there are five types of thumb hypoplasia, originally described by Muller in 1937 and improved by Blauth, Buck-Gramcko and Manske.
- Type I: the thumb is small, normal components are present but undersized. Two muscles of the thumb, the abductor pollicis brevis and opponens pollicis, are not fully developed
. This type requires no surgical treatment in most cases.
- Type II is characterized by a tight web space between the thumb and index finger which restricts movement, poor thenar muscles and an unstable middle joint of the thumb metacarpophalangeal joint. This unstable thumb is best treated with reconstruction of the mentioned structures.
- Type III thumbs are subclassified into two subtypes by Manske. Both involve a less developed first metacarpal and a nearly absent thenar musculature. Type III-A has a fairly stable carpometacarpal joint and type III-B does not. The function of the thumb is poor. Children with type III are the most difficult patients to treat because there is not one specific treatment for the hypoplastic thumb. The limit between pollicization and reconstruction varies. Some surgeons have said that type IIIA is amenable to reconstruction and not type IIIB. Others say type IIIA is not suitable for reconstruction too. Based on the diagnosis the doctor has to decide what is needed to be done to obtain a more functional thumb, i.e. reconstruction or pollicization. In this group careful attention should be paid to anomalous tendons coming from the forearm (extrinsic muscles, like an aberrant long thumb flexor – flexor pollicis longus).
- Type IV is called a pouce flottant, floating thumb. This thumb has a neurovascular bundle which connects it to the skin of the hand. There’s no evidence of thenar muscles and rarely functioning tendons. It has a few rudimentary bones. Children with type IV are difficult to reconstruct. This type is nearly always treated with an index finger pollicization to improve hand function.
- Type V is no thumb at all and requires pollicization.
Thumb hypoplasia is a spectrum of congenital abnormalities of the thumb varying from small defects to absolute retardation of the thumb. It can be isolated, when only the thumb is affected, and in 60% of the cases it is associated with radial dysplasia (or radial club, radius dysplasia, longitudinal radial deficiency). Radial dysplasia is the condition in which the forearm bone and the soft tissues on the thumb side are underdeveloped or absent.
In an embryo the upper extremities develop from week four of the gestation. During the fifth to eighth week the thumb will further develop. In this period something goes wrong with the growth of the thumb but the exact cause of thumb hypoplasia is unknown.
One out of every 100,000 live births shows thumb hypoplasia. In more than 50% of the cases both hands are affected, otherwise mainly the right hand is affected.
About 86% of the children with hypoplastic thumb have associated abnormalities. Embryological hand development occurs simultaneously with growth and development of the cardiovascular, neurologic and hematopoietic systems. Thumb hypoplasia has been described in 30 syndromes wherein those abnormalities have been seen. A syndrome is a combination of three or more abnormalities. Examples of syndromes with an hypoplastic thumb are Holt-Oram syndrome, VACTERL association and thrombocytopenia absent radius (TAR syndrome).