Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
An eye that has no refractive error when viewing distant objects is said to have "emmetropia" or be "emmetropic" meaning the eye is in a state in which it can focus parallel rays of light (light from distant objects) on the retina, without using any accommodation. A distant object in this case is defined as an object located beyond 6 meters, or 20 feet, from the eye, since the light from those objects arrives as essentially parallel rays when considering the limitations of human perception.
An eye that has refractive error when viewing distant objects is said to have "ametropia" or be "ametropic". This eye cannot focus parallel rays of light (light from distant objects) on the retina, or needs accommodation to do so.
The word "ametropia" can be used interchangeably with "refractive error". Types of ametropia include myopia, hyperopia and astigmatism. They are frequently categorized as spherical errors and cylindrical errors:
- Spherical errors occur when the optical power of the eye is either too large or too small to focus light on the retina. People with refractive error frequently have blurry vision.
- Nearsightedness: When the optics are too powerful for the length of the eyeball one has myopia or nearsightedness. This can arise from a cornea or crystalline lens with too much curvature (refractive myopia) or an eyeball that is too long (axial myopia). Myopia can be corrected with a concave lens which causes the divergence of light rays before they reach the cornea.
- Farsightedness: When the optics are too weak for the length of the eyeball, one has hyperopia or farsightedness. This can arise from a cornea or crystalline lens with not enough curvature (refractive hyperopia) or an eyeball that is too short (axial hyperopia). This can be corrected with convex lenses which cause light rays to converge prior to hitting the cornea.
- Presbyopia: When the flexibility of the lens declines, typically due to age. The individual would experience difficulty in near vision, often relieved by reading glasses, bifocal, or progressive lenses.
- Cylindrical errors cause astigmatism, when the optical power of the eye is too powerful or too weak across one meridian, such as if the corneal curvature tends towards a cylindrical shape. The angle between that meridian and the horizontal is known as the axis of the cylinder.
- Astigmatism: A person with astigmatic refractive error sees lines of a particular orientation less clearly than lines at right angles to them. This defect can be corrected by refracting light more in one meridian than the other. Cylindrical lenses serve this purpose.
Although astigmatism may be asymptomatic, higher degrees of astigmatism may cause symptoms such as blurry vision, squinting, eye strain, fatigue, or headaches. Some research has pointed to the link between astigmatism and higher prevalence of migraine headaches.
Refractive error, also known as refraction error, is a problem with focusing light accurately onto the retina due to the shape of the eye. The most common types of refractive error are near-sightedness, far-sightedness, astigmatism, and presbyopia. Near-sightedness results in far away objects being blurry, far-sightedness and presbyopia result in close objects being blurry, astigmatism causes objects to appear stretched out or blurry. Other symptoms may include double vision, headaches, and eye strain.
Near-sightedness is due to the length of the eyeball being too long, far-sightedness the eyeball too short, astigmatism the cornea being the wrong shape, and presbyopia aging of the lens of the eye such that it cannot change shape sufficiently. Some refractive errors occur more often among those whose parents are affected. Diagnosis is by eye examination.
Refractive errors are corrected with eyeglasses, contact lenses, or surgery. Eyeglasses are the easiest and safest method of correction. Contact lenses can provide a wider field of vision; however they are associated with a risk of infection. Refractive surgery permanently changes the shape of the cornea.
The number of people globally with refractive errors has been estimated at one to two billion. Rates vary between regions of the world with about 25% of Europeans and 80% of Asians affected. Near-sightedness is the most common disorder. Rates among adults are between 15-49% while rates among children are between 1.2-42%. Far-sightedness more commonly affects young children and the elderly. Presbyopia affects most people over the age of 35. The number of people with refractive errors that have not been corrected was estimated at 660 million (10 per 100 people) in 2013. Of these 9.5 million were blind due to the refractive error. It is one of the most common causes of vision loss along with cataracts, macular degeneration, and vitamin A deficiency.
In with-the-rule astigmatism, the eye has too much "plus" cylinder in the horizontal axis relative to the vertical axis (i.e., the eye is too "steep" along the vertical meridian relative to the horizontal meridian). This causes vertical beams of light to focus anterior to (in front of) horizontal beams of light, within the eye. This problem may be corrected using spectacles which have a "minus" cylinder placed on this horizontal axis. The effect of this will be that when a vertical beam of light in the distance travels towards the eye, the "minus" cylinder (which is placed with its axis lying horizontally – in line with the patient's excessively steep horizonal axis/vertical meridian) will cause this vertical beam of light to slightly "diverge", or "spread out vertically", before it reaches the eye. This compensates for the fact that the patient's eye converges light more powerfully in the vertical meridian than the horizontal meridian. Hopefully, after this, the eye will focus all light on the same location at the retina, and the patient's vision will be less blurred.
In against-the-rule astigmatism, a plus cylinder is added in the horizontal axis (or a minus cylinder in the vertical axis).
Axis is always recorded as an angle in degrees, between 0 and 180 degrees in a counter-clockwise direction. Both 0 and 180 degrees lie on a horizontal line at the level of the center of the pupil, and as seen by an observer, 0 lies on the right of both the eyes.
Irregular astigmatism, which is often associated with prior ocular surgery or trauma, is also a common naturally occurring condition. The two steep hemimeridians of the cornea, 180° apart in regular astigmatism, may be separated by less than 180° in irregular astigmatism (called "nonorthogonal" irregular astigmatism); and/or the two steep hemimeridians may be asymmetrically steep—that is, one may be significantly steeper than the other (called "asymmetric" irregular astigmatism). Irregular astigmatism is quantified by a vector calculation called topographic disparity.
The eye, like any other optical system, suffers from a number of specific optical aberrations. The optical quality of the eye is limited by optical aberrations, diffraction and scatter. Correction of spherocylindrical refractive errors has been possible for nearly two centuries following Airy's development of methods to measure and correct ocular astigmatism. It has only recently become possible to measure the aberrations of the eye and with the advent of refractive surgery it might be possible to correct certain types of irregular astigmatism.
The appearance of visual complaints such as halos, glare and monocular diplopia after corneal refractive surgery has long been correlated with the induction of optical aberrations. Several mechanisms may explain the increase in the amount of higher-order aberrations with conventional eximer laser refractive procedures: a change in corneal shape toward oblateness or prolateness (after myopic and hyperopic ablations respectively), insufficient optical zone size and imperfect centration. These adverse effects are particularly noticeable when the pupil is large.
Refractive errors such as hyperopia and Anisometropia may be associated abnormalities found in patients with vertical strabismus.
The vertical miscoordination between the two eyes may lead to
- Strabismic amblyopia, (due to deprivation / suppression of the deviating eye)
- cosmetic defect (most noticed by parents of a young child and in photographs)
- Face turn, depending on presence of binocular vision in a particular gaze
- diplopia or double vision - more seen in adults (maturity / plasticity of neural pathways) and suppression mechanisms of the brain in sorting out the images from the two eyes.
- cyclotropia, a cyclotorsional deviation of the eyes (rotation around the visual axis), particularly when the root cause is an oblique muscle paresis causing the hypertropia.
Hypertropia is a condition of misalignment of the eyes (strabismus), whereby the visual axis of one eye is higher than the fellow fixating eye.
Hypotropia is the similar condition, focus being on the eye with the visual axis lower than the fellow fixating eye.
Dissociated Vertical Deviation is a special type of hypertropia leading to slow upward drift of one or rarely both eyes, usually when the patient is inattentive.
Low order aberrations include Myopia (positive defocus), hyperopia (negative defocus), and regular astigmatism. Other lower-order aberrations are non- visually significant aberrations known as first order aberrations, such as prisms and zero-order aberrations (piston). Low order aberrations account for approximately 90% of the overall wave aberration in the eye.
Some animals suffer from shortsightedness and have poor eyesight. In domestic animals, myopia, with or without astigmatism, occurs frequently.
Whereas the rhinoceros may suffer from less-than-adequate eyesight, it generally survives by concentrating with its superior hearing and sense of smell. Some reports, however state that it can see better when focusing with one eye, particularly when walking, posturing, and combatting.
Pseudomyopia refers to an intermittent and temporary shift in refractive error of the eye towards myopia, in which the focusing of light in front of the retina is due to a transient spasm of the ciliary muscle causing an increase in the refractive power of the eye. It may be either organic, through stimulation of the parasympathetic nervous system, or functional in origin, through eye strain or fatigue of ocular systems. It is common in young adults who have active accommodation, and classically occurs after a change in visual requirements, such as students preparing for an exam, or a change in occupation.
The major symptom is intermittent blurring of distance vision particularly noticeable after prolonged periods of near work, and symptoms of asthenopia. The vision may clear temporarily using concave (minus) lenses. The diagnosis is done by cycloplegic refraction using a strong cycloplegic like atropine or homatropine eye drops. Accommodative amplitude and facility may be reduced as a result of the ciliary muscle spasm.
Treatment is dependent on the underlying aetiology. Organic causes may include systemic or ocular medications, brain stem injury, or active ocular inflammation such as uveitis. Functional pseudomyopia is managed though modification of working conditions, an updated refraction, typically involving a reduction of a myopic prescription to some lower myopic prescription, or through appropriate ocular exercises.
Pain is not typically present in pellucid marginal degeneration, and aside from vision loss, no symptoms accompany the condition. However, in rare cases, PMD may present with sudden onset vision loss and excruciating eye pain, which occurs if the thinning of the cornea leads to perforation. While PMD usually affects both eyes, some unilateral cases have been reported.
PMD is characterized by bilateral thinning (ectasia) in the inferior and peripheral region of the cornea. The distribution of the degeneration is crescent or arcuate shaped. The cornea just above the region of thinning is of normal thickness, and may protrude anteriorly, which creates an irregular astigmatism. This is described as a "beer belly" appearance since the greatest protrusion occurs below the horizontal midline (unlike keratoconus). Normally, PMD does not present with vascularization of the cornea, scarring, or any deposits of lipid.
Eye strain, also known as asthenopia, is an eye condition that manifests through nonspecific symptoms such as fatigue, pain in or around the eyes, blurred vision, headache, and occasional double vision. Symptoms often occur after reading, computer work, or other close activities that involve tedious visual tasks.
When concentrating on a visually intense task, such as continuously focusing on a book or computer monitor, the ciliary muscle tightens. This can cause the eyes to get irritated and uncomfortable. Giving the eyes a chance to focus on a distant object at least once an hour usually alleviates the problem.
A CRT computer monitor with a low refresh rate (<70Hz) or a CRT television can cause similar problems because the image has a visible flicker. Aging CRTs also often go slightly out of focus, and this can cause eye strain. LCDs do not go out of focus but are also susceptible to flicker if the backlight for the LCD uses PWM for dimming. This causes the backlight to turn on and off for shorter intervals as the display becomes dimmer, creating noticeable flickering which causes eye fatigue.
A page or photograph with the same image twice slightly displaced (from a printing mishap, or a camera moving during the shot) can cause eye strain by the brain misinterpreting the image fault as diplopia and trying in vain to adjust the sideways movements of the two eyeballs to fuse the two images into one. The word is from Greek "asthen-opia: ἀσθεν-ωπία" = "weak-eye-condition".
Eye strain can happen with a blurred image (including images deliberately partly blurred for censorship), due to the ciliary muscle tightening trying in vain to focus the blurring out.
Pellucid marginal degeneration (PMD), is a degenerative corneal condition, often confused with keratoconus. It is typically characterized by a clear, bilateral thinning (ectasia) in the inferior and peripheral region of the cornea, although some cases affect only one eye. The cause of the disease remains unclear.
The term "pellucid marginal degeneration" was first coined in 1957 by the ophthalmologist Schalaeppi. The word "pellucid" means clear, indicating that the corneas retain clarity in pellucid marginal degeneration.
Lenticonus (/len·ti·co·nus/ (len″tĭ-ko´nus)) [lens + L. conus, cone] is a rare congenital anomaly of the eye characterized by a conical protrusion on the crystalline lens capsule and the underlying cortex. It can reach a diameter of 2 to 7 mm. The conus may occur anteriorly or posteriorly. If the bulging is spherical, instead of conical, the condition is referred to as "lentiglobus". It produces a decrease in visual acuity and irregular refraction that cannot be corrected by either spectacle or contact lenses.
Biomicroscopically "lenticonus" is characterized by a transparent, localized, sharply demarcated conical projection of the lens capsule and cortex, usually axial in localization. In an early stage, retro-illumination shows an «oil droplet» configuration. Using a narrow slit, the image of a conus is observed. In a more advanced stage associated subcapsular and cortical opacities appear. Retinoscopically the oil droplet produces a pathognomonic scissors movement of the light reflex. This phenomenon is due to the different refraction in the central and the peripheral area of the lens. Ultrasonography also can illustrate the existence of a "lenticonus". A-scan ultrasonography may reveal an increased lens thickness and B- scanultrasonography may show herniated lenticular material, suggestive of a lenticonus. Amblyopia, cataract, strabismus and loss of central fixation may be observed in association with lenticonus posterior. Cataract, flecked retinopathy, posterior polymorphous dystrophy and corneal arcus juvenilis may be encountered in association with lenticonus anterior that occurs as a part of the Alport syndrome.
Exist two distinct types of "lenticonus" based on the face of the lens affected.
Sometimes asthenopia can be due to specific visual problems—for example, uncorrected refraction errors or binocular vision problems such as accommodative insufficiency or heterophoria. It is often caused by the viewing of monitors such as those of computers or phones for prolonged periods of time.
Symptoms of pterygium include persistent redness, inflammation, foreign body sensation, tearing, dry and itchy eyes. In advanced cases the pterygium can affect vision as it invades the cornea with the potential of obscuring the optical center of the cornea and inducing astigmatism and corneal scarring. Many patients do complain of the cosmetic appearance of the eye either with some of the symptoms above or as their major complaint.
Cycloplegia is paralysis of the ciliary muscle of the eye, resulting in a loss of accommodation. Because of the paralysis of the ciliary muscle, the curvature of the lens can no longer be adjusted to focus on nearby objects. This results in similar problems as those caused by presbyopia, in which the lens has lost elasticity and can also no longer focus on close-by objects. Cycloplegia with accompanying mydriasis (dilation of pupil) is usually due to topical application of muscarinic antagonists such as atropine and cyclopentolate.
The exact cause is unknown, but it is associated with excessive exposure to wind, sunlight, or sand. Therefore, it is more likely to occur in populations that inhabit the areas near the equator, as well as windy locations. In addition, pterygia are twice as likely to occur in men than women.
Spaceflight induced visual impairment is hypothesized to be a result of increased intracranial pressure. The study of visual changes and intracranial pressure (ICP) in astronauts on long-duration flights is a relatively recent topic of interest to Space Medicine professionals. Although reported signs and symptoms have not appeared to be severe enough to cause blindness in the near term, long term consequences of chronically elevated intracranial pressure is unknown.
NASA has reported that fifteen long-duration male astronauts (45–55 years of age) have experienced confirmed visual and anatomical changes during or after long-duration flights. Optic disc edema, globe flattening, choroidal folds, hyperopic shifts and an increased intracranial pressure have been documented in these astronauts. Some individuals experienced transient changes post-flight while others have reported persistent changes with varying degrees of severity.
Although the exact cause is not known at this time, it is suspected that microgravity-induced cephalad fluid shift and comparable physiological changes play a significant role in these changes. Other contributing factors may include pockets of increased CO and an increase in sodium intake. It seems unlikely that resistive or aerobic exercise are contributing factors, but they may be potential countermeasures to reduce intraocular pressure (IOP) or intracranial pressure (ICP) in-flight.
Cycloplegic drugs are generally muscarinic receptor blockers. These include atropine, cyclopentolate, homatropine, scopolamine and tropicamide. They are indicated for use in cycloplegic refraction (to paralyze the ciliary muscle in order to determine the true refractive error of the eye) and the treatment of uveitis. All cycloplegics are also mydriatic (pupil dilating) agents and are used as such during eye examination to better visualize the retina.
When cycloplegic drugs are used as a mydriatic to dilate the pupil, the pupil in the normal eye regains its function when the drugs are metabolized or carried away. Some cycloplegic drugs can cause dilation of the pupil for several days. Usually the ones used by ophthalmologists or optometrists wear off in hours, but when the patient leaves the office strong sunglasses are provided for comfort.
Although a definitive cause (or set of causes) for the symptoms outlined in the Existing Long-Duration Flight Occurrences section is unknown, it is thought that venous congestion in the brain brought about by cephalad-fluid shifts may be a unifying pathologic mechanism. Additionally, a recent study reports changes in CSF hydrodynamics and increased diffusivity around the optic nerve under simulated microgravity conditions which may contribute to ocular changes in spaceflight. As part of the effort to elucidate the cause(s), NASA has initiated an enhanced occupational monitoring program for all mission astronauts with special attention to signs and symptoms related to ICP.
Similar findings have been reported among Russian Cosmonauts who flew long-duration missions on MIR. The findings were published by Mayasnikov and Stepanova in 2008.
Animal research from the Russian Bion-M1 mission indicates duress of the cerebral arteries may induce reduced blood flow, thereby contributing to impaired vision.
On 2 November 2017, scientists reported that significant changes in the position and structure of the brain have been found in astronauts who have taken trips in space, based on MRI studies. Astronauts who took longer space trips were associated with greater brain changes.
Glossoptosis is a medical condition and abnormality which involves the downward displacement or retraction of the tongue. It may cause non-fusion of the hard palate causing cleft palate.
It is one of the features of Pierre Robin sequence and Down syndrome.
They are typically white bands traversing the width of the nail. As the nail grows they move towards the end, and finally disappear when trimmed.
Mees' lines or Aldrich–Mees' lines, also called leukonychia striata, are white lines of discoloration across the nails of the fingers and toes (leukonychia).