Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Symptoms may begin quickly or slowly depending on the size of the embolus and how much it blocks the blood flow. Symptoms of embolisation in an organ vary with the organ involved but commonly include:
- Pain in the involved body part
- Temporarily decreased organ function
Later symptoms are closely related to infarction of the affected tissue. This may cause permanently decreased organ function.
For example, symptoms of myocardial infarction mainly include chest pain, dyspnea, diaphoresis (an excessive form of sweating), weakness, light-headedness, nausea, vomiting, and palpitations.
Symptoms of limb infarction include coldness, decreased or no pulse beyond the site of blockage, pain, muscle spasm, numbness and tingling, pallor and muscle weakness, possibly to the grade of paralysis in the affected limb.
Clinical symptoms and signs are often non-specific or absent in early CTEPH, with signs of right heart failure only in advanced disease. The main symptom of CTEPH is exertional breathlessness (shortness of breath during exertion such as exercise), which is unspecific and may often be attributed to other, more common, diseases by physicians. When present, the clinical symptoms of CTEPH may resemble those of acute PE, or of idiopathic pulmonary arterial hypertension (iPAH). Leg oedema (swelling) and haemoptysis (blood in mucus) occur more often in CTEPH, while syncope (fainting) is more common in iPAH.
Chronic thromboembolic pulmonary hypertension (CTEPH) is a long-term disease caused by a blockage in the blood vessels that deliver blood from the heart to the lungs (pulmonary arteries), resulting in increased pressure in these arteries (pulmonary hypertension). The blockage either results from a hardened blood clot that is thought to originate from the deep veins of the body (thromboembolism) and remains in the arteries, or from a scar that forms at the site where the clot has damaged the arteries, causing permanent fibrous obstruction (blood flow blockage). Most patients have a combination of microvascular (small vessel) and macrovascular (large vessel) obstruction. Some patients may present with normal or near-normal pulmonary pressures at rest despite symptomatic disease. These patients are labelled as having chronic thromboembolic disease (CTED).
Diagnosis is based on findings obtained after at least 3 months of effective anticoagulation therapy (blood thinners) in order to discriminate this condition from ‘subacute’ pulmonary embolism (blood clot in the lungs, PE). Diagnostic findings for CTEPH are:
1. Invasively (i.e., in the blood) measured mean pulmonary arterial pressure (mPAP) ≥25 mmHg;
2. Mismatched perfusion defects on lung ventilation/perfusion (V/Q) scan and specific diagnostic signs for CTEPH seen by multidetector computed tomography angiography (MDCT), magnetic resonance imaging (MRI) or conventional pulmonary cineangiography (PAG), such as ring-like stenoses, webs/slits, chronic total occlusions (pouch lesions, or tapered lesions) and tortuous lesions.
Arterial emboli often occur in the legs and feet. Some may occur in the brain, causing a stroke, or in the heart, causing a heart attack. Less common sites include the kidneys, intestines, and eyes.
Symptoms of pulmonary embolism are typically sudden in onset and may include one or many of the following: dyspnea (shortness of breath), tachypnea (rapid breathing), chest pain of a "pleuritic" nature (worsened by breathing), cough and hemoptysis (coughing up blood). More severe cases can include signs such as cyanosis (blue discoloration, usually of the lips and fingers), collapse, and circulatory instability because of decreased blood flow through the lungs and into the left side of the heart. About 15% of all cases of sudden death are attributable to PE.
On physical examination, the lungs are usually normal. Occasionally, a pleural friction rub may be audible over the affected area of the lung (mostly in PE with infarct). A pleural effusion is sometimes present that is exudative, detectable by decreased percussion note, audible breath sounds, and vocal resonance. Strain on the right ventricle may be detected as a left parasternal heave, a loud pulmonary component of the second heart sound, and/or raised jugular venous pressure. A low-grade fever may be present, particularly if there is associated pulmonary hemorrhage or infarction.
As smaller pulmonary emboli tend to lodge in more peripheral areas without collateral circulation they are more likely to cause lung infarction and small effusions (both of which are painful), but not hypoxia, dyspnea or hemodynamic instability such as tachycardia. Larger PEs, which tend to lodge centrally, typically cause dyspnea, hypoxia, low blood pressure, fast heart rate and fainting, but are often painless because there is no lung infarction due to collateral circulation. The classic presentation for PE with pleuritic pain, dyspnea and tachycardia is likely caused by a large fragmented embolism causing both large and small PEs. Thus, small PEs are often missed because they cause pleuritic pain alone without any other findings and large PEs often missed because they are painless and mimic other conditions often causing ECG changes and small rises in troponin and BNP levels.
PEs are sometimes described as massive, submassive and nonmassive depending on the clinical signs and symptoms. Although the exact definitions of these are unclear, an accepted definition of massive PE is one in which there is hemodynamic instability such as sustained low blood pressure, slowed heart rate, or pulselessness.
A paradoxical embolism, also called a crossed embolism, refers to an embolus which is carried from the venous side of circulation to the arterial side, or vice versa. It is a kind of stroke or other form of arterial thrombosis caused by embolism of a thrombus (blood clot), air, tumor, fat, or amniotic fluid of venous origin, which travels to the arterial side through a lateral opening in the heart, such as a patent foramen ovale, or arteriovenous shunts in the lungs.
The opening is typically an atrial septal defect, but can also be a ventricular septal defect.
Paradoxical embolisms represent two percent of arterial emboli.
Arterial embolism can cause occlusion in any part of the body. It is a major cause of infarction, tissue death due to the blockage of blood supply.
An embolus lodging in the brain from either the heart or a carotid artery will most likely be the cause of a stroke due to ischemia.
An arterial embolus might originate in the heart (from a thrombus in the left atrium, following atrial fibrillation or be a septic embolus resulting from endocarditis). Emboli of cardiac origin are frequently encountered in clinical practice. Thrombus formation within the atrium occurs mainly in patients with mitral valve disease, and especially in those with mitral valve stenosis (narrowing), with atrial fibrillation (AF). In the absence of AF, pure mitral regurgitation has a low incidence of thromboembolism.
The risk of emboli forming in AF depends on other risk factors such as age, hypertension, diabetes, recent heart failure, or previous stroke.
Thrombus formation can also take place within the ventricles, and it occurs in approximately 30% of anterior-wall myocardial infarctions, compared with only 5% of inferior ones. Some other risk factors are poor ejection fraction (<35%), size of infarct, and the presence of AF. In the first three months after infarction, left-ventricle aneurysms have a 10% risk of emboli forming.
Patients with prosthetic valves also carry a significant increase in risk of thromboembolism. Risk varies, based on the valve type (bioprosthetic or mechanical); the position (mitral or aortic); and the presence of other factors such as AF, left-ventricular dysfunction, and previous emboli.
Emboli often have more serious consequences when they occur in the so-called "end circulation": areas of the body that have no redundant blood supply, such as the brain and heart.
Embolism can be classified as to where it enters the circulation either in arteries or in veins. Arterial embolism are those that follow and, if not dissolved on the way, lodge in a more distal part of the systemic circulation. Sometimes, multiple classifications apply; for instance a pulmonary embolism is classified as an arterial embolism as well, in the sense that the clot follows the pulmonary artery carrying deoxygenated blood away from the heart. However, pulmonary embolism is generally classified as a form of venous embolism, because the embolus forms in veins, e.g. deep vein thrombosis.
Pulmonary embolism (PE) is a blockage of an artery in the lungs by a substance that has traveled from elsewhere in the body through the bloodstream (embolism). Symptoms of a PE may include shortness of breath, chest pain particularly upon breathing in, and coughing up blood. Symptoms of a blood clot in the leg may also be present such as a red, warm, swollen, and painful leg. Signs of a PE include low blood oxygen levels, rapid breathing, rapid heart rate, and sometimes a mild fever. Severe cases can lead to passing out, abnormally low blood pressure, and sudden death.
PE usually results from a blood clot in the leg that travels to the lung. The risk of blood clots is increased by cancer, prolonged bed rest, smoking, stroke, certain genetic conditions, estrogen-based medication, pregnancy, obesity, and after some types of surgery. A small proportion of cases are due to the embolization of air, fat, or amniotic fluid. Diagnosis is based on signs and symptoms in combination with test results. If the risk is low a blood test known as a D-dimer will rule out the condition. Otherwise a CT pulmonary angiography, lung ventilation/perfusion scan, or ultrasound of the legs may confirm the diagnosis. Together deep vein thrombosis and PE are known as venous thromboembolism (VTE).
Efforts to prevent PE include beginning to move as soon as possible after surgery, lower leg exercises during periods of sitting, and the use of blood thinners after some types of surgery. Treatment is typically with blood thinners such as heparin or warfarin. Often these are recommended for six months or longer. Severe cases may require thrombolysis using medication such as tissue plasminogen activator (tPA), or may require surgery such as a pulmonary thrombectomy. If blood thinners are not appropriate, a vena cava filter may be used.
Pulmonary emboli affect about 430,000 people each year in Europe. In the United States between 300,000 and 600,000 cases occur each year, which results in between 50,000 and 200,000 deaths. Rates are similar in males and females. They become more common as people get older.
Passage of a clot (thrombus) from a systemic vein to a systemic artery. When clots in systemic veins break off (embolize), they travel first to the right side of the heart and, normally, then to the lungs where they lodge, causing pulmonary embolism. On the other hand, when there is a hole at the septum, either upper chambers of the heart (an atrial septal defect) or lower chambers of the heart (ventricular septal defects), a clot can cross from the right to the left side of the heart, then pass into the systemic arteries as a paradoxical embolism. Once in the arterial circulation, a clot can travel to the brain, block a vessel there, and cause a stroke (cerebrovascular accident).
The symptoms of pulmonary hypertension include the following:
Less common signs/symptoms include non-productive cough and exercise-induced nausea and vomiting. Coughing up of blood may occur in some patients, particularly those with specific subtypes of pulmonary hypertension such as heritable pulmonary arterial hypertension, Eisenmenger syndrome and chronic thromboembolic pulmonary hypertension. Pulmonary venous hypertension typically presents with shortness of breath while lying flat or sleeping (orthopnea or paroxysmal nocturnal dyspnea), while pulmonary arterial hypertension (PAH) typically does not.
Other typical signs of pulmonary hypertension include an accentuated pulmonary component of the second heart sound, a right ventricular third heart sound, and parasternal heave indicating a hypertrophied right atrium. Signs of systemic congestion resulting from right-sided heart failure include jugular venous distension, ascites, and hepatojugular reflux. Evidence of tricuspid insufficiency and pulmonic regurgitation is also sought and, if present, is consistent with the presence of pulmonary hypertension.
Pulmonary artery sling is a rare condition in which the left pulmonary artery anomalously originates from a normally positioned right pulmonary artery. The left pulmonary artery arises anterior to the right main bronchus near its origin from the trachea, courses between the trachea and the esophagus and enters the left hilum. Symptoms include cyanosis, dyspnoea and apnoeic spells. It almost always requires surgical intervention. Rarely it is asymptomatic and is detected incidentally in asymptomatic adults.
d vessels can present a large variety of , and/or . The effects may range from a change in blood pressure to an interruption in circulation, depending on the nature and degree of the misplacement and which vessels are involved.
Although "transposed" literally means "swapped", many types of TGV involve vessels that are in abnormal positions, while not actually being swapped with each other. The terms TGV and TGA are most commonly used in reference to dextro-TGA – in which the arteries "are" in swapped positions; however, both terms are also commonly used, though to a slightly lesser extent, in reference to levo-TGA – in which both the arteries and the ventricles are swapped; while other defects in this category are almost never referred to by either of these terms.
Lung infarction, also known as pulmonary infarction, occurs when an artery to the lung becomes blocked and part of the lung dies. It is most often caused by pulmonary embolism.
The symptoms/signs of pulmonary heart disease (cor pulmonale) can be non-specific and depend on the stage of the disorder, and can include blood backing up into the systemic venous system, including the hepatic vein. As pulmonary heart disease progresses, most individuals will develop symptoms like:
Bilharzial cor pulmonale is the condition of right sided heart failure secondary to fibrosis and sclerosis of the pulmonary artery branches. It results from shifting of the "Schistosoma haematobium" ova from the pelvic and vescial plexus to the pulmonary artery branches where they settle and produce granuloma and fibrosis.
Bilharzial cor pulmonale occurs in "Schistosoma mansoni", when the portal pressure rises more than the systemic pressure. So blood will pass from the portal circulation to the systemic circulation carrying "Schistosoma mansoni" ova to reach the lungs.
This condition leads to Pulmonary hypertension, right ventricular hypertrophy and failure.
In dextro-Transposition of the great arteries (dextro-TGA) deoxygenated blood from the right heart is pumped immediately through the aorta and circulated to the body and the heart itself, bypassing the lungs altogether, while the left heart pumps oxygenated blood continuously back into the lungs through the pulmonary artery. In effect, two separate "circular" (parallel) circulatory systems are created. It is called a cyanotic congenital heart defect (CHD) because the newborn infant turns blue from lack of oxygen.
According to WHO classification there are 5 groups of PH, where Group I (pulmonary arterial hypertension) is further subdivided into Group I' and Group I" classes. The most recent WHO classification system (with adaptations from the more recent ESC/ERS guidelines shown in italics) can be summarized as follows:
WHO Group I – Pulmonary arterial hypertension (PAH)
- Idiopathic
- Heritable (BMPR2, ALK1, SMAD9, caveolin 1, KCNK3 mutations)
- Drug- and toxin-induced (e.g., methamphetamine use)
- Associated conditions:Connective tissue disease, HIV infection, Portal hypertension, Congenital heart diseases, Schistosomiasis
WHO Group I' – Pulmonary veno-occlusive disease (PVOD), pulmonary capillary hemangiomatosis (PCH)
- Idiopathic
- Heritable (EIF2AK4 mutations)
- Drugs, toxins and radiation-induced
- Associated conditions:connective tissue disease, HIV infection
WHO Group I" – Persistent pulmonary hypertension of the newborn
WHO Group II – Pulmonary hypertension secondary to left heart disease
- Left ventricular Systolic dysfunction
- Left ventricular Diastolic dysfunction
- Valvular heart disease
- Congenital/acquired left heart inflow/outflow tract obstruction and congenital cardiomyopathy
- Congenital/acquired pulmonary venous stenosis
WHO Group III – Pulmonary hypertension due to lung disease, chronic hypoxia
- Chronic obstructive pulmonary disease (COPD)
- Interstitial lung disease
- Mixed restrictive and obstructive pattern pulmonary diseases
- Sleep-disordered breathing
- Alveolar hypoventilation disorders
- Chronic exposure to high altitude
- Developmental abnormalities
WHO Group IV – chronic arterial obstruction
- Chronic thromboembolic pulmonary hypertension (CTEPH)
- Other pulmonary artery obstructions
- Angiosarcoma or other tumor within the blood vessels
- Arteritis
- Congenital pulmonary artery stenosis
- Parasitic infection (hydatidosis)
WHO Group V – Pulmonary hypertension with unclear or multifactorial mechanisms
- Hematologic diseases: chronic hemolytic anemia (including sickle cell disease)
- Systemic diseases: sarcoidosis, pulmonary Langerhans cell histiocytosis: lymphangioleiomyomatosis, neurofibromatosis, vasculitis
- Metabolic disorders: glycogen storage disease, Gaucher disease, thyroid diseases
- Others: pulmonary tumoral thrombotic microangiopathy, fibrosing mediastinitis, chronic kidney failure, segmental pulmonary hypertension (pulmonary hypertension restricted to one or more lobes of the lungs)
Pulmonary heart disease, also known as cor pulmonale is the enlargement and failure of the right ventricle of the heart as a response to increased vascular resistance (such as from pulmonic stenosis) or high blood pressure in the lungs.
Chronic pulmonary heart disease usually results in right ventricular hypertrophy (RVH), whereas acute pulmonary heart disease usually results in dilatation. Hypertrophy is an adaptive response to a long-term increase in pressure. Individual muscle cells grow larger (in thickness) and change to drive the increased contractile force required to move the blood against greater resistance. Dilatation is a stretching (in length) of the ventricle in response to acute increased pressure.
To be classified as pulmonary heart disease, the cause must originate in the pulmonary circulation system. Two causes are vascular changes as a result of tissue damage (e.g. disease, hypoxic injury), and chronic hypoxic pulmonary vasoconstriction. If left untreated, then death may result, RVH due to a defect is not classified as pulmonary heart disease. The heart and lungs are intricately related; whenever the heart is affected by a disease, the lungs risk following and vice versa.
Because pulmonic regurgitation is the result of other factors in the body, any noticeable symptoms are ultimately caused by an underlying medical condition rather than the regurgitation itself. However, more severe regurgitation may contribute to right ventricular enlargement by dilation, and in later stages, right heart failure. A diastolic decrescendo murmur can sometimes be identified,( heard best) over the left lower sternal border.
Pulmonary insufficiency (or incompetence, or regurgitation) is a condition in which the pulmonary valve is incompetent and allows backflow from the pulmonary artery to the right ventricle of the heart during diastole. While a small amount of backflow may occur ordinarily, it is usually only shown on an echocardiogram and is harmless. More pronounced regurgitation that is noticed through a routine physical examination is a medical sign of disease and warrants further investigation. If it is secondary to pulmonary hypertension it is referred to as a Graham Steell murmur.
Stenosis of the pulmonary artery is a condition where the pulmonary artery is subject to an abnormal constriction (or stenosis). Peripheral pulmonary artery stenosis may occur as an isolated event or in association with Alagille syndrome, Berardinelli-Seip congenital lipodystrophy type 1, Costello syndrome, Keutel syndrome, nasodigitoacoustic syndrome (Keipert syndrome), Noonan syndrome or Williams syndrome.
It should not be confused with a pulmonary valve stenosis, which is in the heart, but can have similar hemodynamic effects. Both stenosis of the pulmonary artery and pulmonary valve stenosis are causes of pulmonic stenosis.
In some cases it is treated with surgery.
Symptoms of arterial gas embolism include:
- Loss of consciousness
- Cessation of breathing
- Vertigo
- Convulsions
- Tremors
- Loss of coordination
- Loss of control of bodily functions
- Numbness
- Paralysis
- Extreme fatigue
- Weakness in the extremities
- Areas of abnormal sensation
- Visual abnormalities
- Hearing abnormalities
- Personality changes
- Cognitive impairment
- Nausea or vomiting
- Bloody sputum
- Symptoms of other consequences of lung overexpansion such as pneumothorax, subcutaneous or mediastinal emphysema may also be present.
Cavernous sinus thrombosis is a specialised form of cerebral venous sinus thrombosis, where there is thrombosis of the cavernous sinus of the basal skull dura, due to the retrograde spread of infection and endothelial damage from the danger triangle of the face. The facial veins in this area anastomose with the superior and inferior ophthalmic veins of the orbit, which drain directly posteriorly into the cavernous sinus through the superior orbital fissure. Staphyloccoal or Streptococcal infections of the face, for example nasal or upper lip pustules may thus spread directly into the cavernous sinus, causing stroke-like symptoms of double vision, squint, as well as spread of infection to cause meningitis.
Pulmonic stenosis, also known as pulmonary stenosis, is a dynamic or fixed obstruction of flow from the right ventricle of the heart to the pulmonary artery. It is usually first diagnosed in childhood.
Pulmonic stenosis is usually due to isolated valvular obstruction (pulmonary valve stenosis), but it may be due to subvalvular or supravalvular obstruction, such as infundibular stenosis. It may occur in association with other congenital heart defects as part of more complicated syndromes (for example, tetralogy of Fallot).