Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Aase syndrome or Aase–Smith syndrome is a rare inherited disorder characterized by anemia with some joint and skeletal deformities. Aase syndrome is thought to be an autosomal recessive inherited disorder. The genetic basis of the disease is not known. The anemia is caused by underdevelopment of the bone marrow, which is where blood cells are formed.
It is named after the American paediatricians Jon Morton Aase and David Weyhe Smith, who characterized it in 1968.
The syndrome consists of severe micrognathia, cleft lip and/or palate, hypoplasia or aplasia of the postaxial elements of the limbs, coloboma of the eyelids, and supernumerary nipples. Additional features of the syndrome include
downward-slanting palpebral fissures, malar hypoplasia, malformed ears, and a broad nasal ridge. Other features include supernumerary vertebrae and other vertebral segmentation and rib defects, heart defects (patent ductus arteriosus, ventricular septal defect and Ostium primum atrial septal defect), lung disease from chronic infection, single umbilical artery, absence of the hemidiaphragm, hypoplasia of the femora, ossification defects of the ischium and pubis, bilobed tongue, lung hypoplasia, and renal reflux.
The syndrome is a rare clinical disorder.
- Physical
- Overgrowth
- Accelerated skeletal maturation
- Dysmorphic facial features
- Prominent eyes
- Bluish sclerae
- Coarse eyebrows
- Upturned nose
- Radiologic examination
- Accelerated osseous maturation
- Phalangeal abnormalities
- Tubular thinning of the long bones
- Skull abnormalities
- Mental
- Often associated with intellectual disability (of variable degree)
SFMS affects the skeletal and nervous system. This syndrome's external signs would be an unusual facial appearance with their heads being slightly smaller and unusually shaped, a narrow face which is also called dolichocephaly, a large mouth with a drooping lower lip that are held open, protruding upper jaw, widely spaced upper front teeth, an underdeveloped chin, cleft palate and exotropied-slanted eyes with drooping eyelids.
Males who have SFMS have short stature and a thin body build. Also skin is lightly pigmented with multiple freckles. They may have scoliosis and chest abnormalities.
Affected boys have reduced muscle tone as infants and young children. X-rays sometimes show that their bones are underdeveloped and show characteristics of younger bones of children. Boys usually under the age of 10 have reduced muscle tone but later, patients with SFMS over the age of 10 have increased muscle tone and reflexes that cause spasticity. Their hands are short with unusual palm creases with short, shaped fingers and foot abnormalities are shortened and have fused toes and usually mild.
They have an absent of a spleen and the genitals may also show undescended testes ranging from mild to severe that leads to female gender assignment.
People who have SFMS have severe mental retardation. They are sometimes restless, behavior problems, seizures and severe delay in language development. They are self-absorbed with reduced ability to socialize with others around them. They also have psychomotor retardation which is the slowing-down of thoughts and a reduction of physical movements. They have cortical atrophy or degeneration of the brain's outer layer. Cortical atrophy is usually founded in older affected people.
Miller syndrome is a genetic condition also known as the Genee–Wiedemann syndrome, Wildervanck–Smith syndrome, or postaxial acrofacial dystosis. The incidence of this condition is not known, but it is considered extremely rare. It is due to a mutation in the DHODH gene. Nothing is known of its pathogenesis.
Respiratory complications are often cause of death in early infancy.
The key affected features of this condition are described in its name.
Scalp: There are raised nodules over the posterior aspect of the scalp, covered by scarred non-hair bearing skin.
Ears: The shape of the pinnae is abnormal, with the superior edge of the pinna being turned over more than usual. The size of the tragus, antitragus and lobule may be small.
Nipples: The nipples are absent or rudimentary. The breasts may be small or virtually absent.
Other features of the condition include:
Dental abnormalities: missing or widely spaced teeth
Syndactyly: toes or fingers may be partially joined proximally
Renal abnormalities: renal hypoplasia, pyeloureteral duplication
Eye abnormalities: Cataract, coloboma of the iris and asymmetric pupils.
Facial features of children with Smith–Magenis syndrome include a broad face, deep-set eyes, large cheeks, and a prominent jaw, as well as a flat nose bridge. The mouth curves downwards and the upper lip curves outwards. These facial features become more noticeable as the individual ages.
Disrupted sleep patterns are characteristic of Smith–Magenis syndrome, typically beginning early in life. Affected people may be very sleepy during the day, but have trouble falling asleep and awaken several times each night, due to an inverted circadian rhythm of melatonin.
People with Smith–Magenis syndrome have engaging personalities, but all also have a lot of behavioral problems. These behavioral problems include frequent temper tantrums, meltdowns and outbursts, aggression, anger, fidgeting, compulsive behavior, anxiety, impulsiveness, and difficulty paying attention. Self-harm, including biting, hitting, head banging, and skin picking, is very common. Repetitive self-hugging is a behavioral trait that may be unique to Smith–Magenis syndrome. People with this condition may also compulsively lick their fingers and flip pages of books and magazines (a behavior known as "lick and flip"), as well as possessing an impressive ability to recall a wide range of small details about people or subject-specific trivia.
Other symptoms can include short stature, abnormal curvature of the spine (scoliosis), reduced sensitivity to pain and temperature, and a hoarse voice. Some people with this disorder have ear abnormalities that lead to hearing loss. Affected individuals may have eye abnormalities that cause nearsightedness (myopia), strabismus, and other problems with vision. Heart and kidney defects also have been reported in people with Smith–Magenis syndrome, though they are less common.
Bannayan–Riley–Ruvalcaba syndrome is associated with enlarged head and benign mesodermal hamartomas (multiple hemangiomas, and intestinal polyps). Dysmorphy as well as delayed neuropsychomotor development can also be present. The head enlargement does not cause widening of the ventricles or raised intracranial pressure; these individuals have a higher risk of developing tumors, as the gene involved in BRRs is phosphatase and tensin homologue.
Some individuals have thyroid issues consistent with multinodular goiter, thyroid adenoma, differentiated non-medullary thyroid cancer,
most lesions are slowly growing. Visceral as well as intracranial involvement may occur in some cases, and can cause bleeding and symptomatic mechanical compression
Children with Weaver syndrome tend to look similar and have distinctive physical and craniofacial characteristics, which may include several, but not all of the following features:
- Macrocephaly
- Large bifrontal diameter
- Flattened occiput
- Long philtrum
- Retrognathia
- Round face in infancy
- Prominent chin crease
- Large ears
- Strabismus
- Hypertelorism
- Epicanthal folds
- Downslanting palpebral fissures
Other features may include loose skin, thin deep-set nails, thin hair, short ribs, limited elbow and knee extension, camptodactyly, and a coarse, low-pitched voice. Delayed development of motor skills such as sitting, standing, and walking are commonly exhibited in early childhood. Patients with Weaver syndrome typically have mild intellectual disability with poor coordination and balance. They also have some neurological abnormalities such as speech delay, epilepsy, intellectual disability, hypotonia or hypertonia, and behavioral problems.
Smith Martin Dodd syndrome is a very rare genetic disorder first described by Smith et al. in 1994. It is characterized by small eyes, a diaphragmatic hernia, and Tetralogy of Fallot, a congenital heart defect. The only known case is of a 9-year-old boy with several congenital anomalies including a diaphragmatic hernia, microphthalmia, and Tetralogy of Fallot. It was found that the boy had a reciprocal translocation t(1;15)(q41;q21.2). A congenital diaphragmatic hernia is consistent with chromosome 1q41-q42 deletion syndrome, and the report by Smith et al. suggested that genes involved in the translocation may be important for the development of morphological characteristics, especially those of the eye or heart.
Smith–Fineman–Myers syndrome (SFMS1), congenital disorder that causes birth defects. This syndrome was named after 3 men, Richard D. Smith, Robert M. Fineman and Gart G. Myers who discovered it around 1980.
The three most common symptoms of Opitz G/BBB syndrome (both type I & II) are hypertelorism (exceptionally wide-spaced eyes), laryngo-tracheo-esophalgeal defects (including clefts and holes in the palate, larynx, trachea and esophagus) and hypospadias (urinary openings in males not at the tip of the penis) (Meroni, Opitz G/BBB syndrome, 2012). Abnormalities in the larynx, trachea and esophagus can cause significant difficulty breathing and/or swallowing and can result in reoccurring pneumonia and life-threatening situations. Commonly, there may be a gap between the trachea and esophagus, referred to as a laryngeal cleft; which can allow food or fluid to enter the airway and make breathing and eating a difficult task.
Genital abnormalities like a urinary opening under the penis (hypospadias), undescended testes (cryptorchidism), underdeveloped scrotum and a scrotum divided into two lobes (bifid scrotum) can all be commonplace for males with the disease.
Developmental delays of the brain and nervous system are also common in both types I and II of the disease. 50% of people with Opitz G/BBB Syndrome will experience developmental delay and mild intellectual disability. This can impact motor skills, speech and learning capabilities. Some of these instances are likened to autistic spectrum disorders. Close to half of the people with Opitz G/BBB Syndrome also have a cleft lip (hole in the lip opening) and possibly a cleft palate (hole in the roof of the mouth), as well. Less than half of the people diagnosed have heart defects, imperforate anus (obstructed anal opening), and brain defects. Of all the impairments, female carriers of X-linked Type I Opitz G/BBB Syndrome usually only have ocular hypertelorism.
Scalp–ear–nipple syndrome (also known as "Finlay–Marks syndrome") is a condition associated with aplasia cutis congenita.
Young–Madders syndrome is detectable from the fetal stage of development largely due to the distinctive consequences of holoprosencephaly, a spectrum of defects or malformations of the brain and face. Facial defects which may manifest in the eyes, nose, and upper lip, featuring cyclopia, anosmia, or in the growth of only a single central incisor, and severe overlapping of the bones of the skull. Cardiac and in some cases pulmonary deformities are present. Another signature deformity is bilateral polydactyly, and many patients also suffer from hypoplasia and genital deformities.
The condition is marked by progressive deterioration, hepatosplenomegaly, dwarfism, and unique facial features. A progressive mental retardation occurs, with death frequently occurring by the age of 10 years.
Developmental delay is evident by the end of the first year, and patients usually stop developing between ages 2 and 4. This is followed by progressive mental decline and loss of physical skills. Language may be limited due to hearing loss and an enlarged tongue. In time, the clear layers of the cornea become clouded and retinas may begin to degenerate. Carpal tunnel syndrome (or similar compression of nerves elsewhere in the body) and restricted joint movement are common.
Affected children may be large at birth and appear normal, but may have inguinal (in the groin) or umbilical (where the umbilical cord passes through the abdomen) hernias. Growth in height may be initially faster than normal, then begins to slow before the end of the first year and often ends around age 3. Many children develop a short body trunk and a maximum stature less than 4 feet. Distinct facial features (including flat face, depressed nasal bridge, and bulging forehead) become more evident in the second year. By age 2, the ribs have widened and are oar-shaped. The liver, spleen, and heart are often enlarged. Children may experience noisy breathing and recurring upper respiratory-tract and ear infections. Feeding may be difficult for some children, and many experience periodic bowel problems. Children with Hurler syndrome often die before age 10 from obstructive airway disease, respiratory infections, or cardiac complications.
As with most genetic diseases there is no way to prevent the entire disease. With prompt recognition and treatment of infections in childhood, the complications of low white blood cell counts may be limited.
Symptoms vary from one type of the syndrome to another and from one patient to another, but they include:
- Very pale or brilliantly blue eyes, eyes of two different colors (complete heterochromia), or eyes with one iris having two different colors (sectoral heterochromia)
- A forelock of white hair ("poliosis"), or premature graying of the hair
- Appearance of wide-set eyes due to a prominent, broad nasal root ("dystopia canthorum")—particularly associated with Type I) also known as "telecanthus"
- Moderate to profound hearing loss (higher frequency associated with Type II);
- A low hairline and eyebrows that meet in the middle ("synophrys")
- Patches of white skin pigmentation, in some cases
- Abnormalities of the arms, associated with Type III
- neurologic manifestations, associated with Type IV
- Cleft lip, mostly associated with Type I
Waardenburg syndrome has also been associated with a variety of other congenital disorders, such as intestinal and spinal defects, elevation of the scapula and cleft lip and palate. Sometimes this is concurrent with Hirschsprung disease.
Robinow noted the resemblance of affected patients' faces to that of a fetus, using the term "fetal facies" to describe the appearance of a small face and widely spaced eyes. Clinical features also may include a short, upturned nose, a prominent forehead, and a flat nasal bridge. The upper lip may be "tented", exposing dental crowding, "tongue tie", or gum hypertrophy.
Though the eyes do not protrude, abnormalities in the lower eyelid may give that impression. Surgery may be necessary if the eyes cannot close fully. In addition, the ears may be set low on the head or have a deformed pinna.
Patients suffer from dwarfism, short lower arms, small feet, and small hands. Fingers and toes may also be abnormally short and laterally or medially bent. The thumb may be displaced and some patients, notably in Turkey, experience ectrodactyly. All patients often suffer from vertebral segmentation abnormalities. Those with the dominant variant have, at most, a single butterfly vertebra. Those with the recessive form, however, may suffer from hemivertebrae, vertebral fusion, and rib anomalies. Some cases resemble Jarcho-Levin syndrome or spondylocostal dysostosis.
Genital defects characteristically seen in males include a micropenis with a normally developed scrotum and testes. Sometimes, testicles may be undescended, or the patient may suffer from hypospadias. Female genital defects may include a reduced size clitoris and underdeveloped labia minora. Infrequently, the labia majora may also be underdeveloped. Some research has shown that females may experience vaginal atresia or haematocolpos.
The autosomal recessive form of the disorder tends to be much more severe. Examples of differences are summarized in the following table:
Bannayan–Riley–Ruvalcaba syndrome (BRRS) is a rare overgrowth syndrome and hamartomatous disorder with occurrence of multiple subcutaneous lipomas, macrocephaly and hemangiomas. The disease is inherited in an autosomal dominant manner.
The disease belongs to a family of hamartomatous polyposis syndromes, which also includes Peutz–Jeghers syndrome, juvenile polyposis and Cowden syndrome. Mutation of the PTEN gene underlies this syndrome, as well as Cowden syndrome, Proteus syndrome, and Proteus-like syndrome, these four syndromes are referred to as PTEN Hamartoma-Tumor Syndromes.
Weaver syndrome (also called Weaver-Smith syndrome) is an extremely rare congenital disorder associated with rapid growth beginning in the prenatal period and continuing through the toddler and youth years. It is characterized by advanced osseous maturation, and distinctive craniofacial, skeletal, and neurological abnormalities. It was first described by Dr. David Weaver in 1974. It is similar to Sotos syndrome.
MPS VII, Sly syndrome, one of the least common forms of the mucopolysaccharidoses, is estimated to occur in fewer than one in 250,000 births. The disorder is caused by deficiency of the enzyme beta-glucuronidase. In its rarest form, Sly syndrome causes children to be born with hydrops fetalis, in which extreme amounts of fluid are retained in the body. Survival is usually a few months or less. Most children with Sly syndrome are less severely affected. Neurological symptoms may include mild to moderate intellectual disability by age 3, communicating hydrocephalus, nerve entrapment, corneal clouding, and some loss of peripheral and night vision. Other symptoms include short stature, some skeletal irregularities, joint stiffness and restricted movement, and umbilical and/or inguinal hernias. Some patients may have repeated bouts of pneumonia during their first years of life. Most children with Sly syndrome live into the teenage or young adult years.
X-linked type I Opitz G/BBB Syndrome is diagnosed on clinical findings, but those findings can vary greatly: even within the same family. Manifestations of X-linked type I are classified in the frequent/major findings and minor findings that are found in less than 50% of individuals.
The three major findings that suggest a person has X-linked Type I Opitz G/BBB Syndrome:
1. Ocular hypertelorism (~100% cases)
2. Hypospadias (85-90% cases)
3. Laryngotracheoesophageal abnormalities (60-70%)
Minor findings found in less than 50% of individuals:
1. Developmental delay (especially intellectually)
2. Cleft lip/palate
3. Congenital heart defects
4. Imperforate (blocked) anus
5. Brain defects (especially corpus callosum)
In 1989, Hogdall used ultrasonographs to diagnose X-linked Type I Opitz G/BBB Syndrome after 19 weeks of pregnancy, by identifying hypertelorism (widely-spaced eyes) and hypospadias (irregular urinary tract openings in the penis).
There is also molecular genetic testing available to identify mutations leading to Opitz G/BBB Syndrome. X-linked Type I testing must be done on MID1, since this is the only gene that is known to cause Type I Opitz G/BBB Syndrome. Two different tests can be performed: sequence analysis and deletion/duplication analysis. In the sequence analysis a positive result would detect 15-50% of the DNA sequence mutated, while a deletion/duplication positive result would find deletion or duplication of one or more exons of the entire MID1 gene.
Young–Madders syndrome, alternatively known as Pseudotrisomy 13 syndrome or holoprosencephaly–polydactyly syndrome, is a genetic disorder resulting from defective and duplicated chromosomes which result in holoprosencephaly, polydactyly, facial malformations and mental retardation, with a significant variance in the severity of symptoms being seen across known cases. Many cases often suffer with several other genetic disorders, and some have presented with hypoplasia, cleft lip, cardiac lesions and other heart defects. In one case in 1991 and another in 2000 the condition was found in siblings who were the product of incest. Many cases are diagnosed prenatally and often in siblings. Cases are almost fatal in the prenatal stage with babies being stillborn.
Though it is now thought that earlier cases were misdiagnosed as other genetic disorders with similar pathology—such as Smith–Lemli–Opitz syndrome—the earliest publicised recognition of the condition as a new, hitherto unclassified, genetic disorder was made by two British doctors in Leicester in 1987. Though they identified the condition, later named for them, they did not identify the genetic anomalies responsible but suspected a link with trisomy 13 due to the similar symptoms. With only one or two occurrences documented towards the end of the decade, a group of eight doctors published a five-patient case-study in 1991 which identified the likely chromosomal factors that caused the condition, similar to but distinct from trisomy 13, and gave it the name 'holoprosencephaly–polydactyly syndrome' based on its two most prolific presenting conditions. Later research showed that the condition could manifest in patients with normal karyotypes, without duplication of the chromosomes, and the most recent genetic research implicates problems with the gene code FBXW11 as a likely cause.
Microcephaly is a characteristic in which the circumference of the head is smaller than normal due to improper development of the brain. It is caused by genetic disorders, infections, radiation, medications or alcohol abuse during pregnancy. Defects in the growth of the cerebral cortex lead to many of the features associated with microcephaly. There is currently no known method of correcting microcephaly. However, there are a variety of symptomatic treatments that help to counter some of its adverse effects, such as speech and occupational therapies, as well as medication to control seizures and hyperactivity. Microcephaly has a vast range of prognoses: some patients experience little to very mental retardation and can reach regular age-appropriate milestones. Others may experience severe mental retardation and neuromuscular side effects.