Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The syndrome causes cerebellar ataxia (balance and coordination problems), mental retardation, congenital cataracts in early childhood, muscle weakness, inability to chew food, thin brittle fingernails, and sparse hair.
Small stature, mild to severe mental retardation and dysarthria (slow, imprecise speech) are usually present.
Various skeletal abnormalities (e.g., curvature of the spine) and hypergonadotropic hypogonadism often occur.
Muscle weakness is progressive, but life expectancy is near normal.
The features of this condition include
- Facial dysmorphism
- Short stature
- Mild motor control and learning difficulties
- Mild ataxia
- Microcephaly
- Normal intelligence
- Conjunctival telangiectasia
- Recurrent sinus infections
- Decreased serum IgA
- Late onset of pulmonary fibrosis
- Increased alpha-fetoprotein
- Increased radiosensitivity
There is substantial variability in the severity of features of A-T among affected individuals, and at different ages. The following symptoms or problems are either common or important features of A-T:
- Ataxia (difficulty with control of movement) that is apparent early but worsens in school to pre-teen years
- Oculomotor apraxia (difficulty with coordination of head and eye movement when shifting gaze from one place to the next)
- Involuntary movements
- Telangiectasia (dilated blood vessels) over the white (sclera) of the eyes, making them appear bloodshot. These are not apparent in infancy and may first appear at age 5–8 years. Telangiectasia may also appear on sun-exposed areas of skin.
- Problems with infections, especially of the ears, sinuses and lungs
- Increased incidence of cancer (primarily, but not exclusively, lymphomas and leukemias)
- Delayed onset or incomplete pubertal development, and very early menopause
- Slowed rate of growth (weight and/or height)
- Drooling particularly in young children when they are tired or concentrating on activities
- Dysarthria (slurred, slow, or distorted speech sounds)
- Diabetes in adolescence or later
- Premature changes in hair and skin
Many children are initially misdiagnosed as having ataxic cerebral palsy. The diagnosis of A-T may not be made until the preschool years when the neurologic symptoms of impaired gait, hand coordination, speech and eye movement appear or worsen, and the telangiectasia first appear. Because A-T is so rare, doctors may not be familiar with the symptoms, or methods of making a diagnosis. The late appearance of telangiectasia may be a barrier to the diagnosis. It may take some time before doctors consider A-T as a possibility because of the early stability of symptoms and signs.
The first indications of A-T usually occur during the toddler years. Children start walking at a normal age, but may not improve much from their initial wobbly gait. Sometimes they have problems standing or sitting still and tend to sway backward or from side to side. In primary school years, walking becomes more difficult, and children will use doorways and walls for support. Children with A-T often appear better when running or walking quickly in comparison to when they are walking slowly or standing in one place. Around the beginning of their second decade, children with typical forms of A-T start using a wheelchair for long distances. During school years, children may have increasing difficulty with reading because of impaired coordination of eye movement. At the same time, other problems with fine-motor functions (writing, coloring, and using utensils to eat), and with slurring of speech (dysarthria) may arise. Most of these neurologic problems stop progressing after the age of about 12 – 15 years, though involuntary movements may start at any age and may worsen over time. These extra movements can take many forms, including small jerks of the hands and feet that look like fidgeting (chorea), slower twisting movements of the upper body (athetosis), adoption of stiff and twisted postures (dystonia), occasional uncontrolled jerks (myoclonic jerks), and various rhythmic and non-rhythmic movements with attempts at coordinated action (tremors).
LIG4 syndrome (also known as Ligase IV syndrome) is an extremely rare condition caused by mutations in the DNA Ligase IV (LIG4) gene. Some mutations in this gene are associated with a resistance against multiple myeloma and Severe Combined Immunodeficiency. Severity of symptoms depends on the degree of reduced enzymatic activity of Ligase IV or gene expression.
As DNA ligase IV is essential in V(D)J recombination, the mechanism by which immunoglobulins, B cell and T cell receptors are formed, patients with LIG4 syndrome may suffer from less effective or defective V(D)J recombination. Some patients have a severe immunodeficiency characterized by pancytopenia, causing chronic respiratory infections and sinusitis. Clinical features also include Seckel syndrome-like facial abnormalities and microcephaly. Patients also suffer from growth retardation and skin conditions, including photosensitivity, psoriasis and telangiectasia. Although not present in all, patients may also present with hypothyroidism and type II diabetes and possibly malignancies such as acute T-cell leukemia. The clinical phenotype of LIG4 syndrome closely resembles that of Nijmegen breakage syndrome (NBS).
Onset : Early childhood
Progression: Chronic progressive
Clinical: Cerebellar ataxia plus syndrome / Optic Atrophy Plus Syndrome
Ocular: Optic atrophy, nystagmus, scotoma, and bilateral retrobulbar neuritis.
Other: Mental retardation, myoclonic epilepsy, spasticity, and posterior column sensory loss. Tremor in some cases.
Musculoskeletal
Contractures, lower limbs, Achilles tendon contractures, Hamstring contractures, Adductor longus contractures
Systemic
Hypogonadotrophic hypogonadism.
The combination of muscular hypotonia and fixed dilated pupils in infancy is suspicious of Gillespie syndrome. Early onset partial aniridia, cerebellar ataxia, and mental retardation are hallmark of syndrome. The iris abnormality is specific and seems pathognomonic of Gillespie syndrome. The aniridia consisting of a superior coloboma and inferior iris hypoplasia, foveomacular dysplasia.
Atypical Gillespie syndrome associated with bilateral ptosis, exotropia, correctopia, iris hypoplasia, anterior capsular lens opacities, foveal hypoplasia, retinal vascular tortuosity, and retinal hypopigmentation.
Neurological signs ar nystagmus, mild craniofacial asymmetry, axial hypotonia, developmental delay, and mild mental retardation. Mariën P did not support the prevailing view of a global mental retardation as a cardinal feature of Gillespie syndrome but primarily reflect cerebellar induced neurobehavioral dysfunctions following disruption of the cerebrocerebellar anatomical circuitry that closely resembles the "cerebellar cognitive and affective syndrome" (CeCAS).
Congenital pulmonary stenosis and helix dysplasia can be associated.
Males show more serious symptoms than females affected by this disorder.
The symptoms for males are:
1. Profound sensorineural hearing loss i.e, a complete or almost complete loss of hearing caused by abnormalities in the inner ear.
2. Weak muscle tone - Hypotonia.
3. Impaired muscle coordination - Ataxia.
4. Developmental delay.
5. Intellecual disability.
6. Vision loss caused by optic nerve atrophy in early childhood.
7. Peripheral neuropathy.
8. Recurrent infections, especially in the respiratory system.
9. Muscle weakness caused by recurrent infections.
Symptoms for females:
Very rarely seen hearing loss that begins in adulthood (age > 20 years) combined with ataxia and neuropathy. Optic atrophy and retinitis pigmentosa observed in some cases too.
Diagnosis of MSS is based on clinical symptoms, magnetic resonance imaging (MRI) of the brain (cerebellar atrophy particularly involving the cerebellar vermis), and muscle biopsy.
It can be associated with mutations of the SIL1 gene, and a mutation can be found in about 50% of cases.
Differential diagnosis includes Congenital Cataracts Facial Dysmorphism Neuropathy (CCFDN), Marinesco–Sjögren like syndrome with chylomicronemia, carbohydrate deficient glycoprotein syndromes, Lowe syndrome, and mitochondrial disease.
RIDDLE syndrome is a rare genetic syndrome. The name is an acronym for Radiosensitivity, ImmunoDeficiency Dysmorphic features and LEarning difficulties.
An individual displaying MERRFs syndrome will manifest not only a single symptom, but regularly patients display more than one affected body part at a time. It has been observed that patients with MERRF syndrome will primarily display Myoclonus as a first symptom, along with it they can also manifest seizures, cerebellar ataxia and myopathy. Secondary features include dementia, optic atrophy, bilateral deafness, peripheral neuropathy, spasticity or multiple lipomata. Additional symptoms include dementia, optic atrophy, bilateral deafness and peripheral neuropathy, spasticity, lipomatosis, and/or cardiomyopathy with wolff parkinson-white syndrome. Most patients will not exhibit all of these symptoms, however more than one of these symptoms will be present in a patient who has been diagnosed with MERRFS disease. Due to the multi-symptoms presented by the individual, the severity of the syndrome is very difficult to evaluate. Mitochondrial disorders may present at any age, and this holds truth for MERRS, since it forms part of them. Therefore, if a patient is presenting some of these symptoms, the doctor is able to narrow it down to MEERF mitochondrial disorder.
Chromosome instability syndromes are a group of inherited conditions associated with chromosomal instability and breakage. They often lead to an increased tendency to develop certain types of malignancies.
The following chromosome instability syndromes are known:
- Ataxia telangiectasia
- Ataxia telangiectasia-like disorder
- Bloom syndrome
- Fanconi anaemia
- Nijmegen breakage syndrome
Bhaskar–Jagannathan has symptoms such as long fingers, thin fingers, poor balance, incoordination, high levels of amino acids in urine, cataracts during infancy, and ataxia. Ataxia, which is a neurological sign and symptom made up of gross incoordination of muscle movements and is a specific clinical manifestation
Symptoms include:
- intellectual disability (more than half of the patients have an IQ below 50)
- microcephaly
- sometimes pancytopenia (low blood counts)
- cryptorchidism
- low birth weight
- dislocations of pelvis and elbow
- unusually large eyes
- low ears
- small chin
Symptoms typically are onset in the adult years, although, childhood cases have also been observed. Common symptoms include a loss of coordination which is often seen in walking, and slurred speech. ADCA primarily affects the cerebellum, as well as, the spinal cord. Some signs and symptoms are:
An inherited disorder associated with the deposition of a steroid known as cholestanol in the brain and other tissues and with elevated levels of cholesterol in plasma but with normal total cholesterol level; it is characterized by progressive cerebellar ataxia beginning after puberty and by juvenile cataracts, juvenile or infantile onset chronic diarrhea, childhood neurological deficit, and tendineous or tuberous xanthomas.
Behr syndrome is characterized by the association of early-onset optic atrophy with spinocerebellar degeneration resulting in ataxia, pyramidal signs, peripheral neuropathy and developmental delay.
Although it is an autosomal recessive disorder, heterozygotes may still manifest much attenuated symptoms. Autosomal dominant inheritance also being reported in a family. Recently a variant of OPA1 mutation with phenotypic presentation like Behr syndrome is also described. Some reported cases have been found to carry mutations in the OPA1, OPA3 or C12ORF65 genes which are known causes of pure optic atrophy or optic atrophy complicated by movement disorder.
There are three main types of the disease each with its own distinctive symptoms.
Type I infantile form, infants will develop normally until about a year old. At this time, the affected infant will begin to lose previously acquired skills involving the coordination of physical and mental behaviors. Additional neurological and neuromuscular symptoms such as diminished muscle tone, weakness, involuntary rapid eye movements, vision loss, and seizures may become present. With time, the symptoms worsen and children affected with this disorder will experience a decreased ability to move certain muscles due to muscle rigidity. The ability to respond to external stimuli will also decrease. Other symptoms include neuroaxonal dystrophy from birth, discoloration of skin, Telangiectasia or widening of blood vessels.
Type II adult form, symptoms are milder and may not appear until the individual is in his or her 30s. Angiokeratomas, an increased coarsening of facial features, and mild intellectual impairment are likely symptoms.
Type III is considered an intermediate disorder. Symptoms vary and can include to be more severe with seizures and mental retardation, or less severe with delayed speech, a mild autistic like presentation, and/or behavioral problems.
Cerebrotendineous xanthomatosis or cerebrotendinous xanthomatosis (CTX), also called cerebral cholesterosis, is an autosomal recessive form of xanthomatosis. It falls within a group of genetic disorders called the leukodystrophies.
Non-progressive congenital ataxia (NPCA) is a non-progressive form of cerebellar ataxia which can occur with or without cerebellar hypoplasia.
Onset of symptoms usually occur in early adulthood and is characterized by intention tremor, progressive ataxia, convulsions, and myoclonic epileptic jerks.
Tremors usually affect one extremity, primarily the upper limb, and eventually involve the entire voluntary motor system. Overall, the lower extremity is usually disturbed less often than the upper extremity.
Additional features of the syndrome include: an unsteady gait, seizures, muscular hypotonia, reduced muscular coordination, asthenia, adiadochokinesia and errors with estimating range, direction, and force of voluntary movements. Mental deterioration can occur, however it is rare.
MERRF syndrome (or myoclonic epilepsy with ragged red fibers) is a mitochondrial disease. It is extremely rare, with an estimated prevalence of 1/4,000 in Northern Europe, and has varying degrees of expressivity owing to heteroplasmy. MERRF syndrome affects different parts of the body, particularly the muscles and nervous system. The signs and symptoms of this disorder appear at an early age, generally childhood or adolescence. The causes of MERRF syndrome is difficult to determine, however since its a mitochondrial disorder it can be caused by the mutation of nuclear DNA or mitochondrial DNA. The classification of this disease varies from patient to patient, since many individuals do not fall into one specific disease category.The primary features displayed on a person with MERRF include myoclonus, seizures, cerebellar ataxia, myopathy and ragged ref fibers (RRF) on muscle biopsy, leading to the diseases name. Secondary features include dementia, optic atrophy, bilateral deafness, peripheral neuropathy, spasticity or multiple lipomata. Mitochondrial disorders may present at any age, and this holds truth for MERRFS, since it forms part of them.
Aniridia ataxia renal agenesis psychomotor retardation is a rare genetic disorder characterized by missing irises of the eye, ataxia, psychomotor retardation and abnormal kidneys. It is detected via genetic test.
Gillespie syndrome, also called aniridia, cerebellar ataxia and mental deficiency. is a rare genetic disorder. The disorder is characterized by partial aniridia (meaning that part of the iris is missing), ataxia (motor and coordination problems), and, in most cases, intellectual disability. It is heterogeneous, inherited in either an autosomal dominant or autosomal recessive manner. Gillespie syndrome was first described by American ophthalmologist Fredrick Gillespie in 1965.
Autosomal recessive cerebellar ataxia type 1 (ARCA1) is a condition characterized by progressive problems with movement. Signs and symptoms of the disorder first appear in early to mid-adulthood. People with this condition initially experience impaired speech (dysarthria), problems with coordination and balance (ataxia), or both. They may also have difficulty with movements that involve judging distance or scale (dysmetria). Other features of ARCA1 include abnormal eye movements (nystagmus) and problems following the movements of objects with their eyes. The movement problems are slowly progressive, often resulting in the need for a cane, walker, or wheelchair.