Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The ostium secundum atrial septal defect is the most common type of atrial septal defect, and comprises 6–10% of all congenital heart diseases.
The secundum atrial septal defect usually arises from an enlarged foramen ovale, inadequate growth of the septum secundum, or excessive absorption of the septum primum. About 10 to 20% of individuals with ostium secundum ASDs also have mitral valve prolapse.
An ostium secundum ASD accompanied by an acquired mitral valve stenosis is called Lutembacher's syndrome.
Most individuals with an uncorrected secundum ASD do not have significant symptoms through early adulthood. More than 70% develop symptoms by about 40 years of age. Symptoms are typically decreased exercise tolerance, easy fatigability, palpitations, and syncope.
Complications of an uncorrected secundum ASD include pulmonary hypertension, right-sided heart failure, atrial fibrillation or flutter, stroke, and Eisenmenger's syndrome.
While pulmonary hypertension is unusual before 20 years of age, it is seen in 50% of individuals above the age of 40. Progression to Eisenmenger's syndrome occurs in 5 to 10% of individuals late in the disease process.
Left to right shunting heart defects include:
- Ventricular septal defect (VSD) (30% of all congenital heart defects)
- Atrial septal defect (ASD)
- Atrioventricular septal defect (AVSD)
- Patent ductus arteriosus (PDA)
- Previously, Patent ductus arteriosus (PDA) was listed as acyanotic but in actuality it can be cyanotic due to pulmonary hypertension resulting from the high pressure aorta pumping blood into the pulmonary trunk, which then results in damage to the lungs which can then result in pulmonary hypertension as well as shunting of blood back to the right ventricle. This consequently results in less oxygenation of blood due to alveolar damage as well as oxygenated blood shunting back to the right side of the heart, not allowing the oxygenated blood to pass through the pulmonary vein and back to the left atrium.
- (Edit - this is called Eisenmenger's syndrome and can occur with Atrial septal defect and ventricular septal defect as well (actually more common in ASD and VSD) therefore PDA can still be listed as acyanotic as, acutely, it is)
Others:
- levo-Transposition of the great arteries (l-TGA)
Acyanotic heart defects without shunting include:
- Pulmonary stenosis (a narrowing of the pulmonary valve)
- Aortic stenosis
- Coarctation of the aorta
A defect in the ostium primum is occasionally classified as an atrial septal defect, but it is more commonly classified as an atrioventricular septal defect
On ECG superior axis deviation is generally found in primum ASD, but an RSR pattern (M pattern) in V1 is characteristic. Fixed splitting of the second heart sound occurs because of equal filling of the left and right atria during all phases of the respiratory cycle.
Patients with Atrial Septal Defects may have Atrial Fibrillation, Atrial Tachycardia, or Atrial Flutter, but these arrythmias are not usually seen until patients grow older. Features also seen on the EKG include Right Atrial Enlargement, PR prolongation and advanced AV block. When you suspect a patient has an ASD based on the findings of an incomplete Right Bundle Branch Block with a rSr' or rSR' the next thing you should do is examine the frontal plane QRS. The frontal plane QRS is the most helpful clue to help you differentiate Secundum ASD from Primum ASD. In Primum defects left axis deviation is seen in most patients with an axis of > -30 degrees and very few patients have right axis deviation. In contrast Secundum defects have an axis between 0 degrees and 180 degrees with most cases to the right of 100 degrees.
In the ECG above, you can see an example of the rSR' pattern in V1 with a R' greater than S with T wave inversion which is commonly seen in volume overload Right Ventricular Hypertrophy.
Major symptoms of Lutembacher's syndrome as a result of ASD and MS can range from heart failure to pulmonary congestion.
- Right ventricular overload and Right-sided heart failure: Both are caused by a large ASD and MS (moderate to severe).
- Palpitations: This is caused by blood flowing from left atrium to the right atrium causing a higher left atrial pressure and leading to mitral stenosis. Both atria will be dilated (stretched or open)leading to future atrial arrhythmias or atrial fibrillation (Riaz).
- Pulmonary congestion: When blood or fluid pools within the lungs; this is usually a symptom of mitral stenosis and a small ASD.
- Loud mitral S1 and wide fixed split of pulmonary S2: The loud sound of the mitral S1 and the wide fixed split of pulmonary S2 is a symptoms of mitral stenosis. The sounds often are caused by a reduced pressure gradient in the mitral area that was caused from decompression of the left atrium from the ASD and a displacement (moving from normal position) of the left ventricular lower portion of the heart to the a large right ventricle. The second heart sound (S2) split is caused by the increase right heart blood flow through the ASD causing a late closing of the pulmonary component of the S2 as well as decreased left ventricular and aortic blood flow.
- III/IV mid diastolic murmur, early systolic murmur: This heart murmur is caused by an increase blood flow through the tricuspid valve due to ASD; it is heard best in the left lower sternal area or the bottom of the heart (apex).
A sinus venosus atrial septal defect is a type of atrial septal defect primarily associated with the sinus venosus.
They represent 5% of atrial septal defects.
They can occur near the superior vena cava or inferior vena cava, but the former are more common.
They can be associated with anomalous pulmonary venous connection.
As Lutembacher's syndrome is known for ASD and MS, most of the symptoms experienced will be associated with ASD and MS. For most people, they will remain asymptomatic (experience no symptoms) but when symptoms are shown, they are due mainly to ASD and will vary depending on the size of the hole in the atria. If the patient has a large ASD, pulmonary congestion (blood or fluid buildup in the lungs) will happen later but if the patient has a small ASD, symptoms will appear early in the disorder. In general, unless the ASD and mitral stenosis causing Lutembacher's syndrome is severe, symptoms may not appear until the second and third decade of the patient's life. As many of the symptoms are asymptomic and may not appear until later in life, the duration or frequency of the symptoms varies. For symptoms such as palipitations, ventricular overload, heart failure, and pulmonary congenstion, these symptoms may be sudden and not that frequent as they are very severe symptoms. For symptoms such as loud mitral S1, pulmonary S2, mid-diastolic murmur, fatigue, reduced exercise tolerance, weight gain, ankle edema, and right upper quadrant pain, and ascities, these symptoms may be less frequent and severe; their duration may be only a few seconds, minutes, or even months.
An acyanotic heart defect, also known as non-cyanotic heart defect, is a class of congenital heart defects. In these, blood is shunted (flows) from the left side of the heart to the right side of the heart due to a structural defect (hole) in the interventricular septum. People often retain normal levels of oxyhemoglobin saturation in systemic circulation.
This term is outdated, because a person with an acyanotic heart defect may show cyanosis (turn blue due to insufficient oxygen in the blood).
Simple l-TGA does not immediately produce any visually identifiable symptoms, but since each ventricle is intended to handle different blood pressures, the right ventricle may eventually hypertrophy due to increased pressure and produce symptoms such as dyspnea or fatigue.
Complex l-TGA may produce immediate or more quickly-developed symptoms, depending on the nature, degree and number of accompanying defect(s). If a right-to-left or bidirectional shunt is present, the list of symptoms may include mild cyanosis.
d-TGA is often accompanied by other heart defects, the most common type being shunts such as atrial septal defect (ASD) including patent foramen ovale (PFO), ventricular septal defect (VSD), and patent ductus arteriosus (PDA). Stenosis of valves or vessels may also be present.
When no other heart defects are present it is called 'simple' d-TGA; when other defects are present it is called 'complex' d-TGA.
Although it may seem counterintuitive, complex d-TGA presents better chance of survival and less developmental risks than simple d-TGA, as well as usually requiring fewer invasive palliative procedures. This is because the left-to-right and bidirectional shunting caused by the defects common to complex d-TGA allow a higher amount of oxygen-rich blood to enter the systemic circulation. However, complex d-TGA may cause a very slight increase to length and risk of the corrective surgery, as most or all other heart defects will normally be repaired at the same time, and the heart becomes "irritated" the more it is manipulated.
Due to the low oxygen saturation of the blood, cyanosis will appear in areas: around the mouth and lips, fingertips, and toes; these areas are furthest from the heart, and since the circulated blood is not fully oxygenated to begin with, very little oxygen reaches the peripheral arteries. A d-TGA baby will exhibit indrawing beneath the ribcage and "comfortable tachypnea" (rapid breathing); this is likely a homeostatic reflex of the autonomic nervous system in response to hypoxic hypoxia. The infant will be easily fatigued and may experience weakness, particularly during feeding or playing; this interruption to feeding combined with hypoxia can cause failure to thrive. If d-TGA is not diagnosed and corrected early on, the infant may eventually experience syncopic episodes and develop clubbing of the fingers and toes.
CXR : decreased pulmonary blood flow and oligemic lung field
ECG : left axis deviation
Cor triatriatum (or triatrial heart) is a congenital heart defect where the left atrium (cor triatriatum sinistrum) or right atrium (cor triatriatum dextrum) is subdivided by a thin membrane, resulting in three atrial chambers (hence the name).
Cor triatriatum represents 0.1% of all congenital cardiac malformations and may be associated with other cardiac defects in as many as 50% of cases. The membrane may be complete or may contain one or more fenestrations of varying size.
Cor triatrium sinistrum is more common. In this defect there is typically a proximal chamber that receives the pulmonic veins and a distal (true) chamber located more anteriorly where it empties into the mitral valve. The membrane that separates the atrium into two parts varies significantly in size and shape. It may appear similar to a diaphragm or be funnel-shaped, bandlike, entirely intact (imperforate) or contain one or more openings (fenestrations) ranging from small, restrictive-type to large and widely open.
In the pediatric population, this anomaly may be associated with major congenital cardiac lesions such as tetralogy of Fallot, double outlet right ventricle, coarctation of the aorta, partial anomalous pulmonary venous connection, persistent left superior vena cava with unroofed coronary sinus, ventricular septal defect, atrioventricular septal (endocardial cushion) defect, and common atrioventricular canal. Rarely, asplenia or polysplenia has been reported in these patients.
In the adult, cor triatriatum is frequently an isolated finding.
Cor triatriatum dextrum is extremely rare and results from the complete persistence of the right sinus valve of the embryonic heart. The membrane divides the right atrium into a proximal (upper) and a distal (lower) chamber. The upper chamber receives the venous blood from both vena cavae and the lower chamber is in contact with the tricuspid valve and the right atrial appendage.
The natural history of this defect depends on the size of the communicating orifice between the upper and lower atrial chambers. If the communicating orifice is small, the patient is critically ill and may succumb at a young age (usually during infancy) to congestive heart failure and pulmonary edema. If the connection is larger, patients may present in childhood or young adulthood with a clinical picture similar to that of mitral stenosis. Cor triatriatum may also be an incidental finding when it is nonobstructive.
The disorder can be treated surgically by removing the membrane dividing the atrium.
-Transposition of the great arteries (L-Transposition of the great arteries), also commonly referred to as congenitally corrected transposition of the great arteries (CC-TGA), is an acyanotic congenital heart defect (CHD) in which the primary arteries (the aorta and the pulmonary artery) are d, with the aorta anterior and to the left of the pulmonary artery; the left and right ventricles with their corresponding atrioventricular valves are also transposed.
Use of the term "corrected" has been disputed by many due to the frequent occurrence of other abnormalities and or acquired disorders in l-TGA patients.
In segmental analysis, this condition is described as discordance (ventricular inversion) with discordance.l-TGA is often referred to simply as transposition of the great arteries (TGA); however, TGA is a more general term which may also refer to dextro-transposition of the great arteries (d-TGA).
Tricuspid atresia is a form of congenital heart disease whereby there is a complete absence of the tricuspid valve. Therefore, there is an absence of right atrioventricular connection. This leads to a hypoplastic (undersized) or absent right ventricle.
This defect is contracted during prenatal development, when the heart does not finish developing. It causes the heart to be unable to properly oxygenate the rest of the blood in the body. Because of this, the body does not have enough oxygen to live, so other defects must occur to maintain blood flow.
Because of the lack of an A-V connection, an atrial septal defect (ASD) must be present to fill the left ventricle with blood. Also, since there is a lack of a right ventricle there must be a way to pump blood into the pulmonary arteries, and this is accomplished by a ventricular septal defect (VSD).
The causes of Tricupsid atresia are unknown.
An atrial septal defect (ASD) and a ventricular septal defect (VSD) must both be present to maintain blood flow-from the right atrium, the blood must flow through the ASD to the left atrium to the left ventricle and through the VSD to the right ventricle to allow access to the lungs
This type of aneurysm is typically congenital and may be associated with heart defects. It is sometimes associated with Marfan syndrome or Loeys–Dietz syndrome, but may also result from Ehlers–Danlos syndrome, bicuspid aortic valve, atherosclerosis, hypoplastic left heart syndrome, syphilis, cystic medial necrosis, chest injury, or infective endocarditis.
If unruptured, this type of aneurysm may be asymptomatic and therefore go undetected until symptoms appear or medical imaging is performed for other reasons. A ruptured aneurysm typically leads to an aortocardiac shunt and progressively worsening heart failure.
An aneurysm of the aortic sinus may rupture due to infective endocarditis involving the aortic wall and tertiary-stage syphilis.
The manifestations appear depending on the site where the sinus has ruptured. For example, if the sinus ruptures in a low pressure area like the right atrium or right ventricle then a continuous type of murmur is heard. The murmur is located in the left parasternal region mainly confined to the lower sternum. It is also accompanied by a superficial thrill. A ruptured Sinus of Valsalva abscess represents a surgical emergency.
Even though many types of sick sinus syndrome produce no symptoms, a person may present with one or more of the following signs and symptoms:
- Stokes-Adams attacks – fainting due to asystole or ventricular fibrillation
- Dizziness or light-headedness
- Palpitations
- Chest pain or angina
- Shortness of breath
- Fatigue
- Headache
- Nausea
Ambulatory monitoring of the electrocardiogram (ECG) may be necessary because arrhythmias are transient. The ECG may show any of the following:
- Inappropriate sinus bradycardia
- Sinus arrest
- Sinoatrial block
- Tachy-Brady Syndrome
- Atrial fibrillation with slow ventricular response
- A prolonged asystolic period after a period of tachycardias
- Atrial flutter
- Ectopic atrial tachycardia
- Sinus node reentrant tachycardia
- Wolff-Parkinson-White syndrome
Electrophysiologic tests are no longer used for diagnostic purposes because of their low specificity and sensitivity. Cardioinhibitory and vasodepressor forms of sick sinus syndrome may be revealed by tilt table testing.
Sinus bradycardia is a sinus rhythm with a rate that is lower than normal. In humans, bradycardia is generally defined to be a rate of under 60 beats per minute.
The main symptom of AVNRT is the sudden development of rapid regular palpitations. Often, no provoking factor is identified, although some people affected by AVNRT report developing symptoms in stressful situations, and following consumption of alcohol or caffeine.
In some cases, the onset of the fast heart is associated with a brief drop in blood pressure. When this happens, the patient may experience dizziness or rarely lose consciousness (faint). If the heart rate is very fast, and the patient has underlying coronary artery disease (obstruction of the arteries of the heart by atherosclerosis), chest pain similar to angina may be experienced; this pain is band- or pressure-like around the chest and often radiates to the left arm and angle of the left jaw. AVNRT is rarely life-threatening.
Testing for a malformed vein of Galen is indicated when a patient has heart failure which has no obvious cause. Diagnosis is generally achieved by signs such as cranial bruits and symptoms such as expanded facial veins. The vein of Galen can be visualized using ultrasound or Doppler. A malformed Great Cerebral Vein will be noticeably enlarged. Ultrasound is a particularly useful tool for vein of Galen malformations because so many cases occur in infancy and ultrasound can make diagnoses prenatally. Many cases are diagnosed only during autopsy as congestive heart failure occurs very early.
Vein of Galen aneurysmal malformations (VGAM) and Vein of Galen aneurysmal dilations (VGAD) are the most frequent arteriovenous malformations in infants and fetuses. VGAM consist of a tangled mass of dilated vessels supplied by an enlarged artery. The malformation increases greatly in size with age, although the mechanism of the increase is unknown. Dilation of the great cerebral vein of Galen is a secondary result of the force of arterial blood either directly from an artery via an arteriovenous fistula or by way of a tributary vein that receives the blood directly from an artery. There is usually a venous anomaly downstream from the draining vein that, together with the high blood flow into the great cerebral vein of Galen causes its dilation. The right sided cardiac chambers and pulmonary arteries also develop mild to severe dilation.
In a first degree sinoatrial block, there is a lag between the time that the SA node fires and actual depolarization of the atria. This rhythm is not recognizable on an ECG strip because a strip does not denote when the SA node fires. It can be detected only during an electrophysiology study when a small wire is placed against the SA node from within the heart and the electrical impulses can be recorded as they leave the p-cells in the centre of the node [ see pacemaker potential ], followed by observing a delay in the onset of the p wave on the ECG.
Second degree SA blocks are broken down into two subcategories just like AV blocks are:
The first is a second degree type I, or Wenckebach block. This rhythm is irregular, and the R-R interval gets progressively smaller, while the P-R interval remains constant, until a QRS segment is dropped. Note that this is quite different from the Wenckebach AV block, in which the PR interval gets progressively longer, before the dropped QRS segment. The pause of a second degree type I is less than twice the shortest R-R interval and is not a multiple of the P-R interval. The cause is a gradual lengthening of conduction time from the SA node to the atria. The p-cells in the centre of the node produce the rhythm at a regular rate, but their conduction across the node to where it meets atrial tissue is where the slowing occurs.
A second degree type II, or sinus exit block, is a regular rhythm that may be normal or slow. It is followed by a pause that is a multiple of the P-P interval usually (2-4) . Conduction across the SA node is normal until the time of the pause when it is blocked.
A third degree sinoatrial block looks very similar to a sinus arrest. However, a sinus arrest is caused by a failure to form impulses. A third degree block is caused by failure to conduct them. The rhythm is irregular and either normal or slow. It is followed by a long pause that is not a multiple of the P-R interval. The pause ends with a P wave, instead of a junctional escape beat the way a sinus arrest would.