Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Knobloch syndrome is a rare genetic disorder presenting severe eyesight problems and often a defect in the skull. It was named after W.H. Knobloch, who first described the syndrome in 1971. A usual occurrence is a degeneration of the vitreous humour and the retina, two components of the eye. This breakdown often results in the separation of the retina (the light-sensitive tissue at the back of the eye) from the eye, called retinal detachment, which can be recurrent. Extreme myopia (near-sightedness) is a common feature. The limited evidence available from electroretinography suggests a cone-rod pattern of dysfunction is also a feature.
Knobloch syndrome is caused by mutations in an autosomal recessive inherited gene. These mutations have been found in the COL18A1 gene that instructs for the formation of a protein that builds collagen XVIII. This type of collagen is found in the basement membranes of various body tissues. Its deficiency in the eye is thought to be responsible for affecting normal eye development. There are two types of Knobloch syndrome and the case has been made for a third.
When caused by mutations in the COL18A1 gene it is called Knobloch syndrome type 1. The genes causing types II and III have yet to be identified.
Knobloch syndrome is also characterised by cataracts, dislocated lens with skull defects such as occipital encephalocele and occipital aplasia. Encephalocele is a neural tube defect where the skull has not completely closed and sac-like protrusions of the brain can push through the skull; (it can also result from other causes).
In Knobloch’s syndrome this is usually seen in the occipital region, and aplasia is the underdevelopment of tissue again in this reference in the occipital area.
The specific problems produced differ according to the particular abnormal synthesis involved. Common manifestations include ataxia; seizures; retinopathy; liver fibrosis; coagulopathies; failure to thrive; dysmorphic features ("e.g.," inverted nipples and subcutaneous fat pads; and strabismus. If an MRI is obtained, cerebellar atrophy and hypoplasia is a common finding.
Ocular abnormalities of CDG-Ia include: myopia, infantile esotropia, delayed visual maturation, low vision, optic disc pallor, and reduced rod function on electroretinography.
Three subtypes of CDG I (a,b,d) can cause congenital hyperinsulinism with hyperinsulinemic hypoglycemia in infancy.
Mutations in several genes have been associated with the traditional clinical syndromes, termed muscular dystrophy-dystroglycanopathies (MDDG). A new nomenclature based on clinical severity and genetic cause was recently proposed by OMIM. The severity classifications are A (severe), B (intermediate), and C (mild). The subtypes are numbered one to six according to the genetic cause, in the following order: (1) POMT1, (2) POMT2, (3) POMGNT1, (4) FKTN, (5) FKRP, and (6) LARGE.
Most common severe types include:
The X-linked varieties of congenital stationary night blindness (CSNB) can be differentiated from the autosomal forms by the presence of myopia, which is typically absent in the autosomal forms. Patients with CSNB often have impaired night vision, myopia, reduced visual acuity, strabismus, and nystagmus. Individuals with the complete form of CSNB (CSNB1) have highly impaired rod sensitivity (reduced ~300x) as well as cone dysfunction. Patients with the incomplete form can present with either myopia or hyperopia.
X-linked congenital stationary night blindness (CSNB) is a rare X-linked non-progressive retinal disorder. It has two forms, complete, also known as type-1 (CSNB1), and incomplete, also known as type-2 (CSNB2), depending on severity. In the complete form (CSNB1), there is no measurable rod cell response to light, whereas this response is measurable in the incomplete form. Patients with this disorder have difficulty adapting to low light situations due to impaired photoreceptor transmission. These patients also often have reduced visual acuity, myopia, nystagmus, and strabismus. CSNB1 is caused by mutations in the gene NYX, which encodes a protein involved in retinal synapse formation or synaptic transmission. CSNB2 is caused by mutations in the gene CACNA1F, which encodes a voltage-gated calcium channel Ca1.4.
Not all Congenital Stationary Night Blindness (CSNB) are inherited in X-linked pattern. There are also dominant and recessive inheritance patterns for CSNB.
People with early keratoconus typically notice a minor blurring of their vision and come to their clinician seeking corrective lenses for reading or driving. At early stages, the symptoms of keratoconus may be no different from those of any other refractive defect of the eye. As the disease progresses, vision deteriorates, sometimes rapidly. Visual acuity becomes impaired at all distances, and night vision is often poor. Some individuals have vision in one eye that is markedly worse than that in the other. The disease is often bilateral, though asymmetrical. Some develop photophobia (sensitivity to bright light), eye strain from squinting in order to read, or itching in the eye, but there is normally little or no sensation of pain. It may cause luminous objects to appear as cylindrical pipes with the same intensity at all points.
The classic symptom of keratoconus is the perception of multiple "ghost" images, known as monocular polyopia. This effect is most clearly seen with a high contrast field, such as a point of light on a dark background. Instead of seeing just one point, a person with keratoconus sees many images of the point, spread out in a chaotic pattern. This pattern does not typically change from day to day, but over time, it often takes on new forms. People also commonly notice streaking and flaring distortion around light sources. Some even notice the images moving relative to one another in time with their heart beat.
The predominant optical aberration of the eye in keratoconus is coma. The visual distortion experienced by the person comes from two sources, one being the irregular deformation of the surface of the cornea, and the other being scarring that occurs on its exposed highpoints. These factors act to form regions on the cornea that map an image to different locations on the retina. The effect can worsen in low light conditions, as the dark-adapted pupil dilates to expose more of the irregular surface of the cornea.
Based on clinical appearance, color blindness may be described as total or partial. Total color blindness is much less common than partial color blindness. There are two major types of color blindness: those who have difficulty distinguishing between red and green, and who have difficulty distinguishing between blue and yellow.
Immunofluorescent imaging is a way to determine red–green color coding. Conventional color coding is difficult for individuals with red–green color blindness (protanopia or deuteranopia) to discriminate. Replacing red with magenta or green with turquoise improves visibility for such individuals.
The different kinds of inherited color blindness result from partial or complete loss of function of one or more of the different cone systems. When one cone system is compromised, dichromacy results. The most frequent forms of human color blindness result from problems with either the middle or long wavelength sensitive cone systems, and involve difficulties in discriminating reds, yellows, and greens from one another. They are collectively referred to as "red–green color blindness", though the term is an over-simplification and is somewhat misleading. Other forms of color blindness are much more rare. They include problems in discriminating blues from greens and yellows from reds/pinks, and the rarest forms of all, complete color blindness or "monochromacy", where one cannot distinguish any color from grey, as in a black-and-white movie or photograph.
Protanopes, deuteranopes, and tritanopes are dichromats; that is, they can match any color they see with some mixture of just two primary colors (whereas normally humans are trichromats and require three primary colors). These individuals normally know they have a color vision problem and it can affect their lives on a daily basis. Two percent of the male population exhibit severe difficulties distinguishing between red, orange, yellow, and green. A certain pair of colors, that seem very different to a normal viewer, appear to be the same color (or different shades of same color) for such a dichromat. The terms protanopia, deuteranopia, and tritanopia come from Greek and literally mean "inability to see ("anopia") with the first ("prot-"), second ("deuter-"), or third ("trit-") [cone]", respectively.
Anomalous trichromacy is the least serious type of color deficiency. People with protanomaly, deuteranomaly, or tritanomaly are trichromats, but the color matches they make differ from the normal. They are called anomalous trichromats. In order to match a given spectral yellow light, protanomalous observers need more red light in a red/green mixture than a normal observer, and deuteranomalous observers need more green. From a practical standpoint though, many protanomalous and deuteranomalous people have very little difficulty carrying out tasks that require normal color vision. Some may not even be aware that their color perception is in any way different from normal.
Protanomaly and deuteranomaly can be diagnosed using an instrument called an anomaloscope, which mixes spectral red and green lights in variable proportions, for comparison with a fixed spectral yellow. If this is done in front of a large audience of males, as the proportion of red is increased from a low value, first a small proportion of the audience will declare a match, while most will see the mixed light as greenish; these are the deuteranomalous observers. Next, as more red is added the majority will say that a match has been achieved. Finally, as yet more red is added, the remaining, protanomalous, observers will declare a match at a point where normal observers will see the mixed light as definitely reddish.
Keratoconus (KC) is a disorder of the eye which results in progressive thinning of the cornea. This may result in blurry vision, double vision, nearsightedness, astigmatism, and light sensitivity. Usually both eyes are affected. In more severe cases a scarring or a circle may be seen within the cornea.
While the cause is unknown, it is believed to occur due to a combination of genetic, environmental, and hormonal factors. About seven percent of those affected have a family history of the condition. Proposed environmental factors include rubbing the eyes and allergies. The underlying mechanism involves changes of the cornea to a cone shape. Diagnosis is by examination with a slit lamp.
Initially the condition can typically be corrected with glasses or soft contact lenses. As the disease worsens special contact lenses may be required. In most people the disease stabilizes after a few years without severe vision problems. In a small number of people scarring of the cornea occurs and a corneal transplantation is required.
Keratoconus affects about 1 in 2000 people. It occurs most commonly in late childhood to early adulthood. While it occurs in all populations it may be more frequent in certain ethnic groups such as those of Asian descent. The word is from the Greek "kéras" meaning cornea and the Latin "cōnus" meaning cone.
Other causes of color blindness include brain or retinal damage caused by shaken baby syndrome, accidents and other trauma which produce swelling of the brain in the occipital lobe, and damage to the retina caused by exposure to ultraviolet light (10–300 nm). Damage often presents itself later on in life.
Color blindness may also present itself in the spectrum of degenerative diseases of the eye, such as age-related macular degeneration, and as part of the retinal damage caused by diabetes. Another factor that may affect color blindness includes a deficiency in Vitamin A.
Some subtle forms of colorblindness may be associated with chronic solvent-induced encephalopathy (CSE), caused by longtime exposure to solvent vapors.
Red–green color blindness can be caused by ethambutol, a drug used in the treatment of tuberculosis.