Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Based on clinical testing of subjects with auditory neuropathy, the disruption in the stream of sound information has been localized to one or more of three probable locations: the inner hair cells of the cochlea, the synapse between the inner hair cells and the auditory nerve, or a lesion of the ascending auditory nerve itself.
Auditory neuropathy (AN) is a variety of hearing loss in which the outer hair cells within the cochlea are present and functional, but sound information is not faithfully transmitted to the auditory nerve and brain properly. Also known as auditory neuropathy/auditory dys-synchrony (AN/AD) or auditory neuropathy spectrum disorder (ANSD).
A neuropathy usually refers to a disease of the peripheral nerve or nerves, but the auditory nerve itself is not always affected in auditory neuropathy spectrum disorders.
SSHL is diagnosed via pure tone audiometry. If the test shows a loss of at least 30db in three adjacent frequencies, the hearing loss is diagnosed as SSHL. For example, a hearing loss of 30db would make conversational speech sound more like a whisper.
Sensorineural hearing loss (SNHL) is a type of hearing loss, or deafness, in which the root cause lies in the inner ear or sensory organ (cochlea and associated structures) or the vestibulocochlear nerve (cranial nerve VIII) or neural part. SNHL accounts for about 90% of hearing loss reported. SNHL is generally permanent and can be mild, moderate, severe, profound, or total. Various other descriptors can be used such as high frequency, low frequency, U-shaped, notched, peaked or flat depending on the shape of the audiogram, the measure of hearing.
"Sensory" hearing loss often occurs as a consequence of damaged or deficient cochlear hair cells. Hair cells may be abnormal at birth, or damaged during the lifetime of an individual. There are both external causes of damage, including noise trauma, infection and ototoxic drugs, as well as intrinsic causes, including genetic mutations. A common cause or exacerbating factor in sensory hearing loss is prolonged exposure to environmental noise, for example, being in a loud workplace without wearing protection, or having headphones set to high volumes for a long period. Exposure to a very loud noise such as a bomb blast can cause noise-induced hearing loss.
"Neural", or 'retrocochlear', hearing loss occurs because of damage to the cochlear nerve (CVIII). This damage may affect the initiation of the nerve impulse in the cochlear nerve or the transmission of the nerve impulse along the nerve into the brainstem.
Most cases of SNHL present with a gradual deterioration of hearing thresholds occurring over years to decades. In some the loss may eventually affect large portions of the frequency range. It may be accompanied by other symptoms such as ringing in the ears (tinnitus), dizziness or lightheadedness (vertigo). SNHL can be genetically inherited or acquired as a result from external causes like noise or disease. It may be congenital (present at birth) or develop later in life. The most common kind of sensorineural hearing loss is age-related (presbycusis), followed by noise-induced hearing loss (NIHL).
Frequent symptoms of SNHL are loss of acuity in distinguishing foreground voices against noisy backgrounds, difficulty understanding on the telephone, some kinds of sounds seeming excessively loud or shrill (recruitment), difficulty understanding some parts of speech (fricatives and sibilants), loss of directionality of sound, esp. high frequency sounds, perception that people mumble when speaking, and difficulty understanding speech. Similar symptoms are also associated with other kinds of hearing loss; audiometry or other diagnostic tests are necessary to distinguish sensorineural hearing loss.
Identification of sensorineural hearing loss is usually made by performing a pure tone audiometry (an audiogram) in which bone conduction thresholds are measured. Tympanometry and speech audiometry may be helpful. Testing is performed by an audiologist.
There is no proven or recommended treatment or cure for SNHL; management of hearing loss is usually by hearing strategies and hearing aid. In cases of profound or total deafness, a cochlear implant is a specialised hearing aid which may restore a functional level of hearing. SNHL is at least partially preventable by avoiding environmental noise, ototoxic chemicals and drugs, and head trauma, and treating or inoculating against certain triggering diseases and conditions like meningitis.
Auditory neuropathy spectrum disorder (ANSD) is a specific form of hearing loss defined by the presence of normal or near-normal otoacoustic emissions (OAEs) but the absence of normal middle ear reflexes and severely abnormal or completely absent auditory brainstem response (ABRs).
Individuals presenting with this recently recognised hearing loss appear to display sporadic windows of hearing and not. Very few (1 in 14) will go on to develop normal speech and language but with poor speech perception in background noise and in others, no speech perception and therefore language development is possible.
The condition was originally termed auditory neuropathy (AN) and in 2001 as Auditory Neuropathy / Auditory Dys-synchrony (AN/AD) (to include those cases where no true neuropathy was apparent). In 2008 at a meeting convened at Lake Como in Italy (Guidelines Development
Conference on the Identification and Management
of Infants with Auditory Neuropathy, International
Newborn Hearing Screening Conference, Como, Italy,
June 19–21, 2008), a group of leading authorities on the condition reached a consensus and renamed it as auditory neuropathy spectrum disorder.
CBE is a chronic state of severe bilirubin-induced neurological lesions. Reduction of bilirubin in this state will not reverse the sequelae. Clinically, manifestations of CBE include:
1. movement disorders - athetoid cerebral palsy and or dystonia, 60% have severe motor disability(unable to walk).
2. auditory dysfunction - auditory neuropathy (ANSD)
3. oculomotor impairments (nystagmus, strabismus, Impaired upward or downward gaze, and/or cortical visual impairment),
4. dental enamel hypoplasia/dysplasia of the deciduous teeth,
5. Gastroesophageal reflux,
6. impaired digestive function.
Intellectual disability occur in 25% of cases. But they are often look like intellectually disabled because their severe motor handicaps.
Epilepsy occur in 20% of cases.
These impairments are associated with lesions in the basal ganglia, auditory nuclei of the brain stem, and oculomotor nuclei of the brain stem. Cortex and white matter are mildly involved. Cerebellum may be involved.
ABE is an acute state of elevated bilirubin in the central nervous system. Clinically, it encompasses a wide range of symptoms. These include lethargy, decreased feeding, hypotonia or hypertonia, a high-pitched cry, spasmodic torticollis, opisthotonus, setting sun sign, fever, seizures, and even death. If the bilirubin is not rapidly reduced, ABE quickly progresses to chronic bilirubin encepalopathy.