Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Long-term haemodialysis results in a gradual accumulation of β microglobulin, a serum protein, in the blood. It accumulates because it is unable to cross the dialysis filter.
Affected individuals usually present after 5 years of dialysis rarely before that. The tendency of haemodialysis-associated amyloidosis is to be articular in general affecting the joints.
Familial renal amyloidosis (or familial visceral amyloidosis, or hereditary amyloid nephropathy) is a form of amyloidosis primarily presenting in the kidney.
It is associated most commonly with congenital mutations in the fibrinogen alpha chain and classified as a dysfibrinogenemia (see Hereditary Fibrinogen Aα-Chain Amyloidosis). and, less commonly, with congenital mutations in apolipoprotein A1 and lysozyme.
It is also known as "Ostertag" type, after B. Ostertag, who characterized it in 1932 and 1950.
The kidney is the organ most frequently affected. Proteinuria, loss of protein in the urine, is characteristic. More than 90% of people with LCDD develop kidney failure, often with rapid progression of disease.
Light chains may be deposited in many other organs and may or may not result in any symptoms. Other than the kidneys, liver and heart are the most commonly involved organs. Deposition of light chains in the liver may lead to hepatomegaly, an enlarged liver, or rarely portal hypertension or liver failure. The heart is affected in up to 80% of patients with LCDD, and may cause arrythmias and congestive heart failure.
AL amyloidosis can affect a wide range of organs, and consequently present with a range of symptoms. The kidneys are the most commonly affected organ in AL amyloidosis. Symptoms of kidney disease and renal failure can include fluid retention, swelling, and shortness of breath.
In addition to kidneys, AL amyloidosis may affect the heart, peripheral nervous system, gastrointestinal tract, blood, lungs and skin. Heart complications, which affect more than a third of AL patients, include heart failure and irregular heart beat. Other symptoms can include stroke, gastrointestinal disorders, enlarged liver, diminished spleen function, diminished function of the adrenal and other endocrine glands, skin color change or growths, lung problems, bleeding and bruising problems, fatigue and weight loss.
The presentation of amyloidosis is broad and depends on the site of amyloid accumulation. The kidney and heart are the most common organs involved.
Amyloid deposition in the kidneys can cause nephrotic syndrome, which results from a reduction in the kidney's ability to filter and hold on to proteins. The nephrotic syndrome occurs with or without elevations in creatinine and blood urea concentration, two biochemical markers of kidney injury. In AA amyloidosis, the kidneys are involved in 91–96% of people, symptoms ranging from protein in the urine to nephrotic syndrome and rarely renal insufficiency.
Amyloid deposition in the heart can cause both diastolic and systolic heart failure. EKG changes may be present, showing low voltage and conduction abnormalities like atrioventricular block or sinus node dysfunction. On echocardiography, the heart shows a restrictive filling pattern, with normal to mildly reduced systolic function. AA amyloidosis usually spares the heart.
People with amyloidosis do not get central nervous system involvement but can develop sensory and autonomic neuropathies. Sensory neuropathy develops in a symmetrical pattern and progresses in a distal to proximal manner. Autonomic neuropathy can present as orthostatic hypotension but may manifest more gradually with nonspecific gastrointestinal symptoms like constipation, nausea, or early satiety.
Accumulation of amyloids in the liver can lead to elevations in serum aminotransferases and alkaline phosphatase, two biomarkers of liver injury, which is seen in about one third of people. Liver enlargement is common. In contrast, spleen enlargement is rare, occurring in 5% of people. Splenic dysfunction, leading to the presence of Howell-Jolly bodies on blood smear, occurs in 24% of people with amyloidosis. Malabsorption is seen in 8.5% of AL amyloidosis and 2.4% of AA amyloidosis. One suggested mechanism for the observed malabsorption is that amyloid deposits in the tips of intestinal villi (fingerlike projections that increase the intestinal area available for absorption of food), begin to erode the functionality of the villi, presenting a sprue-like picture.
A rare development is a susceptibility to bleeding with bruising around the eyes, termed "raccoon-eyes," caused by amyloid deposition in the blood vessels and a reduced activity of thrombin and factor X, two clotting proteins that lose their function after binding with amyloid.
Amyloid deposits in tissue and causes enlargement of structures. Twenty percent of people with AL amyloidosis have an enlarged tongue, that can lead to obstructive sleep apnea, difficulty swallowing, and altered taste. Tongue enlargement does not occur in ATTR or AA amyloidosis. Enlarged shoulders, "shoulder pad sign," results from amyloid deposition in synovial space. Deposition of amyloid in the throat can cause hoarseness. Aβ2MG amyloidosis (Hemodialysis associated amyloidosis) likes to deposit in synovial tissue, causing chronic synovitis, which can lead to repeated carpal tunnel syndrome.
Both the thyroid and adrenal gland can be infiltrated. It is estimated that 10–20% of individuals with amyloidosis have hypothyroidism. Adrenal infiltration may be harder to appreciate given that its symptoms of orthostatic hypotension and low blood sodium concentration may be attributed to autonomic neuropathy and heart failure.
"Amyloid deposits occur in the pancreas of patients with diabetes mellitus, although it is not known if this is functionally important. The major component of pancreatic amyloid is a 37-amino acid residue peptide known as islet amyloid polypeptide or 'amylin.' This is stored with insulin in secretory granules in B cells and is co secreted with insulin." (Rang and Dale's Pharmacology, 2015.)
Haemodialysis-associated amyloidosis is a form of systemic amyloidosis associated with chronic kidney failure.
An older clinical method of classification refers to amyloidoses as systemic or localised
- Systemic amyloidoses affect more than one body organ or system. Examples are AL, AA and Aβ2m.
- Localised amyloidoses affect only one body organ or tissue type. Examples are Aβ, IAPP, Atrial natriuretic factor (in isolated atrial amyloidosis), and Calcitonin (in medullary carcinoma of the thyroid)
Another classification is primary or secondary.
- Primary amyloidoses arise from a disease with disordered immune cell function, such as multiple myeloma or other immunocyte dyscrasias.
- Secondary (reactive) amyloidoses occur as a complication of some other chronic inflammatory or tissue-destroying disease. Examples are reactive systemic amyloidosis and secondary cutaneous amyloidosis.
Additionally, based on the tissues in which it is deposited, it is divided into mesenchymal (organs derived from mesoderm) or parenchymal (organs derived from ectoderm or endoderm).
Amyloid light-chain (AL) amyloidosis, primary systemic amyloidosis (PSA) or just primary amyloidosis is the most common form of systemic amyloidosis in the US. The disease is caused when a person's antibody-producing cells do not function properly and produce abnormal protein fibers made of components of antibodies called light chains. These light chains come together to form amyloid deposits which can cause serious damage to different organs. Abnormal light chains in urine are sometimes referred to as "Bence Jones protein".
Most individuals diagnosed with LECT2 amyloidosis in the United States (88%) are of Mexican descent and reside in Southwest region of the United States (New Mexico, Arizona, far Western Texas). Other groups with higher incidence rates of the disorder include First Nation Peoples in Canada, Punjabis, South Asians, Sudanese, Native Americans, and Egyptians. In Egyptians, for example, LECT2 is second most common cause of renal amyloidosis, accounting for nearly 31% of all cases.
ALECT2 amyloidosis is generally diagnosed in individuals between the ages 40 and 90, with a mean age of 67 years old. The disorder commonly presents with renal disease that in general is advanced or at an end stage. Associated signs and symptoms of their renal disease may include fatigue, dehydration, blood in urine, and/or other evidence for the presence of the nephrotic syndrome or renal failure. Further studies may find that these individuals have histological or other evidence of LECT2 amyloid deposition in the liver, lung, spleen, kidney, and/or adrenal glands but nonetheless they rarely show any symptoms or signs attributable to dysfunction in these organs. Unlike many other forms of systemic amyloidosis, LECT2 deposition has not been reported to be deposited in the myocardium or brain of affected individuals. Thus, LECT2 amyloidosis, while classified as a form of systemic amyloidosis, almost exclusively manifests clinically as renal amyloidosis. No familial link has been found in the disorder although there have been several cases described among siblings.
LECT2 Amyloidosis is a form of amyloidosis caused by the LECT2 protein. It was found to be the third most common (~3% of total) cause of amyloidosis in a set of more than 4,000 individuals studied at the Mayo Clinic; the first and second most common forms the disorder were AL amyloidosis and AA amyloidosis, respectively. Amyloidosis is a disorder in which the abnormal deposition of a protein in organs and/or tissues gradually leads to organ failure and/or tissue injury.
Although more than 30 different proteins can cause amyloidosis, the disorder caused by LECT2 is distinctive in three ways. First, it has an unusually high incidence in certain ethnic populations. Second, it is a systemic form of amyloidosis (i.e. amyloid deposited in multiple organs), as opposed to a localized form (amyloid deposits limited to a single organ) but nonetheless injures the kidney without or rarely injuring the other organs in which it is deposited. Third, LECT2 amyloidosis is diagnosed almost exclusively in elderly individuals.
Given its relatively recent discovery, exceptionally strong ethnic bias, limitation to causing kidney disease, and restriction to elderly individuals, LECT2 amyloidosis appears at present to be an under-recognized cause of chronic kidney disease particularly in the ethnic groups that exhibit a high incidence of the disorer.
AA amyloidosis is a form of amyloidosis, a disease characterized by the abnormal deposition of fibers of insoluble protein in the extracellular space of various tissues and organs. In AA amyloidosis, the deposited protein is serum amyloid A protein (SAA), an acute-phase protein which is normally soluble and whose plasma concentration is highest during inflammation.
Light chain deposition disease (LCDD) is a rare blood cell disease which is characterized by deposition of fragments of infection-fighting immunoglobulins, called light chains (LCs), in the body. LCs are normally cleared by the kidneys, but in LCDD, these light chain deposits damage organs and cause disease. The kidneys are almost always affected and this often leads to kidney failure. About half of people with light chain deposition disease also have a plasma cell dyscrasia, a spectrum of diseases that includes multiple myeloma, Waldenström's macroglobulinemia, and the monoclonal gammopathy of undetermined significance premalignant stages of these two diseases. Unlike in AL amyloidosis, in which light chains are laid down in characteristic amyloid deposits, in LCDD, light chains are deposited in non-amyloid granules.
Proteinuria is the presence of excess proteins in the urine. In healthy persons, urine contains very little protein; an excess is suggestive of illness. Excess protein in the urine often causes the urine to become foamy, although foamy urine may also be caused by bilirubin in the urine (bilirubinuria), retrograde ejaculation, pneumaturia (air bubbles in the urine) due to a fistula, or drugs such as pyridium.
There are three main mechanisms to cause proteinuria:
- Due to disease in the glomerulus
- Because of increased quantity of proteins in serum (overflow proteinuria)
- Due to low reabsorption at proximal tubule (Fanconi syndrome)
Proteinuria can also be caused by certain biological agents, such as bevacizumab (Avastin) used in cancer treatment. Excessive fluid intake (drinking in excess of 4 litres of water per day) is another cause.
Also leptin administration to normotensive Sprague Dawley rats during pregnancy significantly increases urinary protein excretion.
Proteinuria may be a sign of renal (kidney) damage. Since serum proteins are readily reabsorbed from urine, the presence of excess protein indicates either an insufficiency of absorption or impaired filtration. People with diabetes may have damaged nephrons and develop proteinuria. The most common cause of proteinuria is diabetes, and in any person with proteinuria and diabetes, the cause of the underlying proteinuria should be separated into two categories: diabetic proteinuria versus the field.
With severe proteinuria, general hypoproteinemia can develop which results in
diminished oncotic pressure. Symptoms of diminished oncotic pressure may include ascites, edema and hydrothorax.
AA amyloidosis is a complication of a number of inflammatory diseases and infections, although only a small portion of patients with these conditions will go on to develop AA amyloidosis. A natural history study of AA amyloidosis patients published in the New England Journal of Medicine reported a number of conditions associated with AA amyloidosis. The most common presentation of AA amyloidosis is renal in nature, including proteinuria, nephrotic syndrome and progressive development of renal insufficiency leading to End Stage Renal Disease (ESRD) and need for renal replacement therapy (e.g. dialysis or renal transplantation).
- Autoimmune diseases
- Rheumatoid arthritis
- Ankylosing spondylitis
- Crohn's disease and ulcerative colitis
- Chronic infections
- Tuberculosis
- Bronchiectasis
- Chronic osteomyelitis
- Autoinflammatory diseases
- Familial Mediterranean fever (FMF)
- Muckle–Wells syndrome (MWS)
- Cancer
- Hodgkin's lymphoma
- Renal cell carcinoma
- Chronic foreign body reaction
- HIV/AIDS
- Silicone-induced granulomatous reaction
Organ-limited amyloidosis is a category of amyloidosis where the distribution can be associated primarily with a single organ. It is contrasted to systemic amyloidosis, and it can be caused by several different types of amyloid.
In almost all of the organ-specific pathologies, there is significant debate as to whether the amyloid plaques are the causal agent of the disease or instead a downstream consequence of a common idiopathic agent. The associated proteins are indicated in parentheses.
Proximal renal tubular acidosis (pRTA) or Type 2 Renal tubular acidosis (RTA) is a type of RTA caused by a failure of the proximal tubular cells to reabsorb filtered bicarbonate from the urine, leading to urinary bicarbonate wasting and subsequent acidemia. The distal intercalated cells function normally, so the acidemia is less severe than dRTA and the urine can acidify to a pH of less than 5.3. pRTA also has several causes, and may occasionally be present as a solitary defect, but is usually associated with a more generalised dysfunction of the proximal tubular cells called Fanconi syndrome where there is also phosphaturia, glycosuria, aminoaciduria, uricosuria and tubular proteinuria.
Patients with type 2 RTA are also typically hypokalemic due to a combination of secondary hyperaldosteronism, and potassium urinary losses - though serum potassium levels may be falsely elevated because of acidosis. Administration of bicarbonate prior to potassium supplementation might lead to worsened hypokalemia, as potassium shifts intracellularly with alkanization.
The principal feature of Fanconi syndrome is bone demineralization (osteomalacia or rickets) due to phosphate and vitamin D wasting.
Wild-type transthyretin amyloid accumulates mainly in the heart, where it causes stiffness and often thickening of its walls, leading consequently to shortness of breath and intolerance to exercise, called diastolic dysfunction. Excessively slow heart rate can also occur, such as in sick sinus syndrome, with ensuing fatigue and dizziness. Wild-type transthyretin deposition is also a common cause of carpal tunnel syndrome in elderly men, which may cause pain, tingling and loss of sensation in the hands. Some patients may develop carpal tunnel syndrome as an initial symptom of wild-type transthyretin amyloid.
There appears to be an increase in the risk for developing hematuria or blood in the urine due to urological lesions.
Familial disorders
- Cystinosis
- Galactosemia
- Glycogen storage disease (type I)
- Hereditary fructose intolerance
- Lowe syndrome
- Tyrosinemia
- Wilson's disease
Acquired disorders
- Amyloidosis
- Multiple myeloma
- Paroxysmal nocturnal hemoglobinuria
- Toxins, such as HAART, ifosfamide, lead, and cadmium
The familial amyloid neuropathies (or familial amyloidotic neuropathies, neuropathic heredofamilial amyloidosis, familial amyloid polyneuropathy) are a rare group of autosomal dominant diseases wherein the autonomic nervous system and/or other nerves are compromised by protein aggregation and/or amyloid fibril formation.
The disorder typically affects the heart and its prevalence increases in older age groups. Men are affected much more frequently than women. In fact, up to 25% of men over the age of 80 may have evidence of WTTA.
Patients often present with increased thickness of the wall of the main heart chamber, the left ventricle. People affected by WTT amyloidosis are likely to have required a pacemaker before diagnosis and have a high incidence of a partial electrical blockage of the heart, known as left bundle branch block. Low ECG signals such as QRS complexes are widely considered a marker of cardiac amyloidosis.
A much better survival has been reported for patients with WTTA as opposed to cardiac AL amyloidosis .
The onset of FAC caused by aggregation of the V122I mutation and wild-type TTR, and senile systemic amyloidosis caused by the exclusive aggregation of wild-type TTR, typically occur after age 60. Greater than 40% of these patients present with carpal tunnel syndrome before developing ATTR-CM. Cardiac involvement is often identified with the presence of conduction system disease (sinus node or atrioventricular node dysfunction) and/or congestive heart failure, including shortness of breath, peripheral edema, syncope, exertional dyspnea, generalized fatigue, or heart block. Unfortunately, echocardiographic findings are indistinguishable from those seen in AL amyloidosis, and include thickened ventricular walls (concentric hypertrophy, both right and left) with a normal-to-small left ventricular cavity, increased myocardial echogenicity, normal or mildly reduced ejection fraction (often with evidence of diastolic dysfunction and severe impairment of contraction along the longitudinal axis), and bi-atrial dilation with impaired atrial contraction. Unlike the situation in AL amyloidosis, the ECG voltage is often normal, although low voltage may be seen (despite increased wall thickness on echocardiography). Marked axis deviation, bundle branch block, and AV block are common, as is atrial fibrillation.
Usually manifesting itself between 20 and 40 years of age, it is characterized by pain, paresthesia, muscular weakness and autonomic dysfunction. In its terminal state, the kidneys and the heart are affected. FAP is characterized by the systemic deposition of amyloidogenic variants of the transthyretin protein, especially in the peripheral nervous system, causing a progressive sensory and motor polyneuropathy.
Secondary systemic amyloidosis is a condition that involves the adrenal gland, liver, spleen, and kidney as a result of amyloid deposition due to a chronic disease such as Behçet's disease, ulcerative colitis, etc.
Primary systemic amyloidosis (AL amyloidosis or just primary amyloidosis) is a disease that involves the mesenchymal tissue, the tongue, heart, gastrointestinal tract, and skin.