Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
AF is usually accompanied by symptoms related to a rapid heart rate. Rapid and irregular heart rates may be perceived as palpitations or exercise intolerance and occasionally may produce anginal chest pain (if the high heart rate causes ischemia). Other possible symptoms include congestive symptoms such as shortness of breath or swelling. The arrhythmia is sometimes only identified with the onset of a stroke or a transient ischemic attack (TIA). It is not uncommon for a patient to first become aware of AF from a routine physical examination or ECG, as it often does not cause symptoms.
Since most cases of AF are secondary to other medical problems, the presence of chest pain or angina, signs and symptoms of hyperthyroidism (an overactive thyroid gland) such as weight loss and diarrhea, and symptoms suggestive of lung disease can indicate an underlying cause. A history of stroke or TIA, as well as high blood pressure, diabetes, heart failure, or rheumatic fever may indicate whether someone with AF is at a higher risk of complications. The risk of a blood clot forming in the left atrium, breaking off, and then traveling in the bloodstream can be assessed using the CHADS2 score or CHA2DS2-VASc score.
Presentation is similar to other forms of rapid heart rate and may be asymptomatic. Palpitations and chest discomfort are common complaints. The rapid uncoordinated heart rate may result in reduced cardiac output, with the heart being unable to provide adequate blood flow and therefore oxygen delivery to the rest of the body. Common symptoms of uncontrolled atrial fibrillation may include shortness of breath, shortness of breath when lying flat, dizziness, and sudden onset of shortness of breath during the night. This may progress to swelling of the lower extremities, a manifestation of congestive heart failure. Due to inadequate cardiac output, individuals with AF may also complain of light-headedness, may feel like they are about to faint, or may actually lose consciousness.
AF can cause respiratory distress due to congestion in the lungs. By definition, the heart rate will be greater than 100 beats per minute. Blood pressure may be variable, and often difficult to measure as the beat-by-beat variability causes problems for most digital (oscillometric) non-invasive blood pressure monitors. For this reason, when determining heart rate in AF, direct cardiac auscultation is recommended. Low blood pressure is most concerning and a sign that immediate treatment is required. Many of the symptoms associated with uncontrolled atrial fibrillation are a manifestation of congestive heart failure due to the reduced cardiac output. Respiratory rate will be increased in the presence of respiratory distress. Pulse oximetry may confirm the presence of hypoxia related to any precipitating factors such as pneumonia. Examination of the jugular veins may reveal elevated pressure (jugular venous distention). Lung exam may reveal crackles, which are suggestive of pulmonary edema. Heart exam will reveal a rapid irregular rhythm.
While atrial flutter can sometimes go unnoticed, its onset is often marked by characteristic sensations of the heart feeling like it is beating too fast or hard. Such sensations usually last until the episode resolves, or until the heart rate is controlled.
Atrial flutter is usually well tolerated initially (a high heart rate is for most people just a normal response to exercise), however, people with other underlying heart disease (such as coronary artery disease) or poor exercise tolerance may rapidly develop symptoms, such as shortness of breath, chest pain, lightheadedness or dizziness, nausea and, in some patients, nervousness and feelings of impending doom.
Prolonged atrial flutter with fast heart rates may lead to decompensation with loss of normal heart function (heart failure). This may manifest as exercise intolerance (exertional breathlessness), difficulty breathing at night, or swelling of the legs and/or abdomen.
Rapid heart rates may produce significant symptoms in patients with pre-existing heart disease and can lead to inadequate blood flow to the heart muscle and even a heart attack. In rare situations, atrial flutter associated with a fast heart rate persists for an extended period of time without being corrected to a normal heart rhythm and leads to a tachycardia-induced cardiomyopathy. Even in individuals with a normal heart, if the heart beats too quickly for a prolonged period of time, this can lead to ventricular decompensation and heart failure.
Left atrial enlargement can be mild, moderate or severe depending on the extent of the underlying condition. Although other factors may contribute, left atrium size has been found to be a predictor of mortality due to both cardiovascular issues as well as all-cause mortality. Current research suggests that left atrium size as measured by an echo-cardiograph may have prognostic implications for preclinical cardiovascular disease. However, studies that have found LAE to be a predictor for mortality recognize the need for more standardized left atrium measurements than those found in an echo-cardiogram.
In the general population, obesity appears to be the most important risk factor for LAE. LAE has been found to be correlated to body size, independent of obesity, meaning that LAE is more common in people with a naturally large body size. Also, a study found that LAE can occur as a consequence of atrial fibrillation (AF), although another study found that AF by itself does not cause LAE. The latter study also showed that the persistent type of AF was associated with LAE, but the number of years that a subject had AF was not.
Obstructive sleep apnea (OSA) may be a cause of LAE in some cases. When an OSA event occurs, an attempt is made to breathe with an obstructed airway and the pressure inside the chest is suddenly lowered. The negative intrathoracic pressure may cause the left atrium to expand and stretch its walls during each OSA event. Over time, the repetitive stretching of the left atrium may result in a persistent left atrial enlargement.
The left side of the heart is responsible for receiving oxygen-rich blood from the lungs and pumping it forward to the systemic circulation (the rest of the body except for the pulmonary circulation). Failure of the left side of the heart causes blood to back up (be congested) into the lungs, causing respiratory symptoms as well as fatigue due to insufficient supply of oxygenated blood. Common respiratory signs are increased rate of breathing and increased "work" of breathing (non-specific signs of respiratory distress). Rales or crackles, heard initially in the lung bases, and when severe, throughout the lung fields suggest the development of pulmonary edema (fluid in the alveoli). Cyanosis which suggests severe low blood oxygen, is a late sign of extremely severe pulmonary edema.
Additional signs indicating left ventricular failure include a laterally displaced apex beat (which occurs if the heart is enlarged) and a gallop rhythm (additional heart sounds) may be heard as a marker of increased blood flow or increased intra-cardiac pressure. Heart murmurs may indicate the presence of valvular heart disease, either as a cause (e.g. aortic stenosis) or as a result (e.g. mitral regurgitation) of the heart failure.
"Backward" failure of the left ventricle causes congestion of the lungs' blood vessels, and so the symptoms are predominantly respiratory in nature. Backward failure can be subdivided into the failure of the left atrium, the left ventricle or both within the left circuit. The patient will have dyspnea (shortness of breath) on exertion and in severe cases, dyspnea at rest. Increasing breathlessness on lying flat, called orthopnea, occurs. It is often measured in the number of pillows required to lie comfortably, and in orthopnea, the patient may resort to sleeping while sitting up. Another symptom of heart failure is paroxysmal nocturnal dyspnea: a sudden nighttime attack of severe breathlessness, usually several hours after going to sleep. Easy fatigability and exercise intolerance are also common complaints related to respiratory compromise.
"Cardiac asthma" or wheezing may occur.
Compromise of left ventricular "forward" function may result in symptoms of poor systemic circulation such as dizziness, confusion and cool extremities at rest.
Heart failure symptoms are traditionally and somewhat arbitrarily divided into "left" and "right" sided, recognizing that the left and right ventricles of the heart supply different portions of the circulation. However, heart failure is not exclusively "backward failure" (in the part of the circulation which drains to the ventricle).
There are several other exceptions to a simple left-right division of heart failure symptoms. Additionally, the most common cause of right-sided heart failure is left-sided heart failure. The result is that patients commonly present with both sets of signs and symptoms.
Diastolic heart failure and diastolic dysfunction refer to the decline in performance of one (usually the left ventricle) or both (left and right) ventricles during diastole. Diastole is the cardiac cycle phase during which the heart is relaxing and filling with incoming blood that is being returned from the body through the inferior (IVC) and superior (SVC) venae cavae to the right atrium and from lungs through pulmonary veins to the left atrium. In diastolic failure, if the patient has symptoms, there is a pathologic cause inducing them. Diastolic dysfunction can be found when doing a Doppler echocardiography in an apparently healthy patient, mainly in an elderly person.
Diastolic dysfunction must be differentiated from diastolic heart failure. Diastolic dysfunction can be found in elderly and apparently quite healthy patients. If diastolic dysfunction describes an abnormal mechanical property, diastolic heart failure describes a clinical syndrome. Mathematics describing the relationship between the ratio of Systole to Diastole in accepted terms of End Systolic Volume to End Diastolic Volume implies many mathematical solutions to forward and backward heart failure.
Criteria for diagnosis of diastolic dysfunction or diastolic heart failure remain imprecise. This has made it difficult to conduct valid clinical trials of treatments for diastolic heart failure. The problem is compounded by the fact that systolic and diastolic heart failure commonly coexist when patients present with many ischemic and nonischemic etiologies of heart failure. Narrowly defined, diastolic failure has often been defined as "heart failure with normal systolic function" (i.e. left ventricular ejection fraction of 60% or more). Chagasic heart disease may represent an optimal academic model of diastolic heart failure that spares systolic function.
A patient is said to have diastolic dysfunction if he has signs and symptoms of heart failure but the left ventricular ejection fraction is normal. A second approach is to use an elevated BNP level in the presence of normal ejection fraction to diagnose diastolic heart failure. Concordance of both volumetric and biochemical measurements and markers lends to even stronger terminology regarding scientific/mathematical expression of diastolic heart failure. These are both probably too broad a definition for diastolic heart failure, and this group of patients is more precisely described as having heart failure with normal systolic function. Echocardiography can be used to diagnose diastolic dysfunction but is a limited modality unless it is supplemented by stress imaging. MUGA imaging is an earlier mathematical attempt to distinguish systolic from diastolic heart failure.
No one single echocardiographic parameter can confirm a diagnosis of diastolic heart failure. Multiple echocardiographic parameters have been proposed as sufficiently sensitive and specific, including mitral inflow velocity patterns, pulmonary vein flow patterns, E:A reversal, tissue Doppler measurements, and M-mode echo measurements (i.e. of left atrial size). Algorithms have also been developed which combine multiple echocardiographic parameters to diagnose diastolic heart failure.
There are four basic Echocardiographic patterns of diastolic heart failure, which are graded I to IV:
- The mildest form is called an "abnormal relaxation pattern", or grade I diastolic dysfunction. On the mitral inflow Doppler echocardiogram, there is reversal of the normal E/A ratio. This pattern may develop normally with age in some patients, and many grade I patients will not have any clinical signs or symptoms of heart failure.
- Grade II diastolic dysfunction is called "pseudonormal filling dynamics". This is considered moderate diastolic dysfunction and is associated with elevated left atrial filling pressures. These patients more commonly have symptoms of heart failure, and many have left atrial enlargement due to the elevated pressures in the left heart.
Grade III and IV diastolic dysfunction are called "restrictive filling dynamics". These are both severe forms of diastolic dysfunction, and patients tend to have advanced heart failure symptoms:
- Class III diastolic dysfunction patients will demonstrate reversal of their diastolic abnormalities on echocardiogram when they perform the Valsalva maneuver. This is referred to as "reversible restrictive diastolic dysfunction".
- Class IV diastolic dysfunction patients will not demonstrate reversibility of their echocardiogram abnormalities, and are therefore said to suffer from "fixed restrictive diastolic dysfunction".
The presence of either class III and IV diastolic dysfunction is associated with a significantly worse prognosis. These patients will have left atrial enlargement, and many will have a reduced left ventricular ejection fraction that indicates a combination of systolic and diastolic dysfunction.
Imaged volumetric definition of systolic heart performance is commonly accepted as ejection fraction. Volumetric definition of the heart in systole was first described by Adolph Fick as cardiac output. Fick may be readily and inexpensively inverted to cardiac input and injection fraction to mathematically describe diastole. Decline of injection fraction paired with decline of E/A ratio seems a stronger argument in support of a mathematical definition of diastolic heart failure.
Another parameter to assess diastolic function is the , which is the ratio of mitral peak velocity of early filling (E) to early diastolic mitral annular velocity (E'). Diastolic dysfunction is assumed when the E/E' ratio exceed 15.
Signs and symptoms of mitral stenosis include the following:
- Heart failure symptoms, such as dyspnea on exertion, orthopnea and paroxysmal nocturnal dyspnea (PND)
- Palpitations
- Chest pain
- Hemoptysis
- Thromboembolism in later stages when the left atrial volume is increased (i.e., dilation). The latter leads to increase risk of atrial fibrillation, which increases the risk of blood stasis (motionless). This increases the risk of coagulation.
- Ascites and edema and hepatomegaly (if right-side heart failure develops)
Fatigue and weakness increase with exercise and pregnancy.
Mitral stenosis is a valvular heart disease characterized by the narrowing of the orifice of the mitral valve of the heart.
Arterial embolism can cause occlusion in any part of the body. It is a major cause of infarction, tissue death due to the blockage of blood supply.
An embolus lodging in the brain from either the heart or a carotid artery will most likely be the cause of a stroke due to ischemia.
An arterial embolus might originate in the heart (from a thrombus in the left atrium, following atrial fibrillation or be a septic embolus resulting from endocarditis). Emboli of cardiac origin are frequently encountered in clinical practice. Thrombus formation within the atrium occurs mainly in patients with mitral valve disease, and especially in those with mitral valve stenosis (narrowing), with atrial fibrillation (AF). In the absence of AF, pure mitral regurgitation has a low incidence of thromboembolism.
The risk of emboli forming in AF depends on other risk factors such as age, hypertension, diabetes, recent heart failure, or previous stroke.
Thrombus formation can also take place within the ventricles, and it occurs in approximately 30% of anterior-wall myocardial infarctions, compared with only 5% of inferior ones. Some other risk factors are poor ejection fraction (<35%), size of infarct, and the presence of AF. In the first three months after infarction, left-ventricle aneurysms have a 10% risk of emboli forming.
Patients with prosthetic valves also carry a significant increase in risk of thromboembolism. Risk varies, based on the valve type (bioprosthetic or mechanical); the position (mitral or aortic); and the presence of other factors such as AF, left-ventricular dysfunction, and previous emboli.
Emboli often have more serious consequences when they occur in the so-called "end circulation": areas of the body that have no redundant blood supply, such as the brain and heart.
Embolism can be classified as to where it enters the circulation either in arteries or in veins. Arterial embolism are those that follow and, if not dissolved on the way, lodge in a more distal part of the systemic circulation. Sometimes, multiple classifications apply; for instance a pulmonary embolism is classified as an arterial embolism as well, in the sense that the clot follows the pulmonary artery carrying deoxygenated blood away from the heart. However, pulmonary embolism is generally classified as a form of venous embolism, because the embolus forms in veins, e.g. deep vein thrombosis.
A silent stroke is a stroke that does not have any outward symptoms associated with stroke, and the patient is typically unaware they have suffered a stroke. Despite not causing identifiable symptoms a silent stroke still causes damage to the brain, and places the patient at increased risk for both transient ischemic attack and major stroke in the future. In a broad study in 1998, more than 11 million people were estimated to have experienced a stroke in the United States. Approximately 770,000 of these strokes were symptomatic and 11 million were first-ever silent MRI infarcts or hemorrhages. Silent strokes typically cause lesions which are detected via the use of neuroimaging such as MRI. The risk of silent stroke increases with age but may also affect younger adults. Women appear to be at increased risk for silent stroke, with hypertension and current cigarette smoking being amongst the predisposing factors.
These types of strokes include lacunar and other ischemic strokes and minor hemorrhages. They may also include leukoaraiosis (changes in the white matter of the brain): the white matter is more susceptible to vascular blockage due to reduced amount of blood vessels as compared to the cerebral cortex. These strokes are termed "silent" because they typically affect "silent" regions of the brain that do not cause a noticeable change in an afflicted person’s motor functions such as contralateral paralysis, slurred speech, pain, or an alteration in the sense of touch. A silent stroke typically affects regions of the brain associated with various thought processes, mood regulation and cognitive functions and is a leading cause of vascular cognitive impairment and may also lead to a loss of urinary bladder control.
In the Cardiovascular Health Study, a population study conducted among 3,660 adults over the age of 65. 31% showed evidence of silent stroke in neuroimaging studies utilizing MRI. These individuals were unaware they had suffered a stroke. It is estimated that silent strokes are five times more common than symptomatic stroke.
A silent stroke differs from a transient ischemic attack (TIA). In TIA symptoms of stroke are exhibited which may last from a few minutes to 24 hours before resolving. A TIA is a risk factor for having a major stroke and subsequent silent strokes in the future.
Children who have suffered silent strokes often have a variety of neuropsychological deficits. These deficits may include lowered I.Q., learning disabilities, and an inability to focus.
Silent strokes are the most common form of neurologic injury in children with sickle cell anemia, who may develop subtle neurocognitive deficits in the areas of attention and concentration, executive function, and visual-motor speed and coordination due to silent strokes which may not have been detected on physical examination.
Acne fulminans begins as pain and inflammation in the joints. It eventually progresses into a swelling of the lymph nodes located at the base of the neck, causing inflexibility in the neck within weeks after the nodes swell. This swelling will eventually decrease, but this decrease will be accompanied by an increased inflammation and swelling of the joints, as well as a complete loss of appetite, though these symptoms are often ignored. After some time, the disease will cause an extreme loss of weight and atrophy of the muscles, leading to the decline of physical abilities.
Acne fulminans (also known as "acute febrile ulcerative acne") is a severe form of the skin disease, acne, which can occur after unsuccessful treatment for another form of acne, acne conglobata. The condition is thought to be an immunologically induced disease in which elevated level of testosterone causes a rise in sebum and population of "Propionibacterium acnes" bacteria. The increase in the amount of "P acnes" or related antigens may trigger the immunologic reaction in some individuals and lead to an occurrence of acne fulminans. In addition to testosterone, isotretinoin may also precipitate acne fulminans, possibly related to highly increased levels of "P acnes antigens" in the patient's immune system. Acne fulminans is a rare disease. Over the past several years, fewer cases of this disease have occurred, possibly because of earlier and better treatment of acne. Approximately 100 patients with acne fulminans have been described.
AIS is broken down into three classes based on phenotype: complete androgen insensitivity syndrome (CAIS), partial androgen insensitivity syndrome (PAIS), and mild androgen insensitivity syndrome (MAIS). A supplemental system of phenotypic grading that uses seven classes instead of the traditional three was proposed by pediatric endocrinologist Charmian A. Quigley et al. in 1995. The first six grades of the scale, grades 1 through 6, are differentiated by the degree of genital masculinization; grade 1 is indicated when the external genitalia is fully masculinized, grade 6 is indicated when the external genitalia is fully feminized, and grades 2 through 5 quantify four degrees of decreasingly masculinized genitalia that lie in the interim. Grade 7 is indistinguishable from grade 6 until puberty, and is thereafter differentiated by the presence of secondary terminal hair; grade 6 is indicated when secondary terminal hair is present, whereas grade 7 is indicated when it is absent. The Quigley scale can be used in conjunction with the traditional three classes of AIS to provide additional information regarding the degree of genital masculinization, and is particularly useful when the diagnosis is PAIS.
Androgen insensitivity syndrome (AIS) is an intersex condition in which there is a partial or complete inability of many cells in the affected genetic male to respond to androgenic hormones. This can prevent or impair the masculinization of male genitalia in the developing genetic male (chromosomal XY) fetus, as well as the development of male secondary sexual characteristics at puberty. Clinical phenotypes range from a normal male habitus with mild spermatogenic defect or reduced secondary terminal hair; to a full female habitus despite the presence of a Y-chromosome. Women (chromosomal XX) who are heterozygous for the AR gene have normal primary and secondary sexual characteristics; this female carrier will pass the affected AR gene to any child she has with 50% likelihood. AIS is the largest single entity that leads to 46,XY undermasculinized genitalia.
The androgen receptor (AR), which is defective due to a mutation in most of these syndromes, is a type of nuclear receptor that is activated by binding to either of the androgenic hormones (testosterone or dihydrotestosterone) in the cytoplasm, and then translocates into the nucleus where it binds to DNA, provided androgen response elements and coactivators are present. This combination functions as a transcription complex to turn on androgen gene expression. Thus the AR activates these genes to mediate the effects of androgens in the human body, including the development and maintenance of the male sexual phenotype and generalized anabolic effects. Over 400 AR mutations have been reported.
AIS is divided into three categories that are differentiated by the degree of genital masculinization: complete androgen insensitivity syndrome (CAIS) is indicated when the external genitalia are that of a normal female; mild androgen insensitivity syndrome (MAIS) is indicated when the external genitalia are that of a normal male, and partial androgen insensitivity syndrome (PAIS) is indicated when the external genitalia are partially, but not fully, masculinized.
Management of AIS is currently limited to symptomatic management; no method is currently available to correct the malfunctioning androgen receptor proteins produced by "AR" gene mutations. Areas of management include sex assignment, genitoplasty, gonadectomy in relation to tumor risk, hormone replacement therapy, genetic counseling, and psychological counseling.
Retrograde amnesia (RA) is a loss of memory-access to events that occurred, or information that was learned, before an injury or the onset of a disease. It tends to negatively affect episodic, autobiographical, and declarative memory while usually keeping procedural memory intact with no difficulty for learning new knowledge. RA can be temporally graded or more permanent based on the severity of its cause and is usually consistent with Ribot's Law: where subjects are more likely to lose memories closer to the traumatic incident than more remote memories. The type of information that is forgotten can be very specific, like a single event, or more general, resembling generic amnesia. It is not to be confused with anterograde amnesia, which deals with the inability to form new memories following the onset of an injury or disease.
Other forms of amnesia exist and may be confused with RA. For instance, anterograde amnesia (AA) is the inability to learn new information. This describes a problem encoding, storing, or retrieving information that can be used in the future. It is important to note that these two conditions can, and often do both occur in the same patient simultaneously, but are otherwise separate forms of amnesia.
RA can also be an inherent aspect of other forms of amnesia, namely transient global amnesia (TGA). TGA is the sudden onset of AA and RA caused by a traumatic event, however it is short lived, typically lasting only 4 to 8 hours. TGA is very difficult to study because of the patients' quick recovery. This form of amnesia, like AA, remains distinct from RA.
Post-traumatic amnesia (PTA) is a state of confusion that occurs immediately following a traumatic brain injury in which the injured person is disoriented and unable to remember events that occur after the injury.
Psychogenic amnesia, or dissociative amnesia, is a memory disorder characterized by sudden retrograde autobiographical memory loss, said to occur for a period of time ranging from hours to years.