Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Signs and symptoms include high blood pressure, headaches, abdominal pain, blood in the urine, and excessive urination. Other symptoms include pain in the back, and cyst formation (renal and other organs).
Symptoms and signs include abdominal discomfort, polyuria, polydipsia, incidental discovery of hypertension, abdominal mass. The classic presentation for ARPKD is systemic hypertension with progression to end-stage renal disease (ESRD) by the age of 15. In a typical presentation, a small number of ARPKD sufferers live to adulthood with some kidney function; but with significant deterioration in liver function. This outcome is postulated to result from expression of the polycystic kidney and hepatic disease gene PKHD1, which is located on chromosome 6p. In severe cases, a fetus will present with oligohydramnios and as a result, may present with Potter sequence.
Polycystic kidney disease (PKD or PCKD, also known as polycystic kidney syndrome) is a genetic disorder in which the renal tubules become structurally abnormal, resulting in the development and growth of multiple cysts within the kidney. These cysts may begin to develop before birth or in infancy, in childhood, or in adulthood. Cysts are non-functioning tubules filled with fluid pumped into them, which range in size from microscopic to enormous, crushing adjacent normal tubules and eventually rendering them non-functional also.
PKD is caused by abnormal genes which produce a specific abnormal protein which has an adverse affect on tubule development. PKD is a general term for two types, each having their own pathology and genetic cause: autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD). The abnormal gene exists in all cells in the body: as a result, cysts may occur in the liver, seminal vesicles, and pancreas. This genetic defect can also cause aortic root aneurysms, and aneurysms in the circle of Willis cerebral arteries, which if they rupture, can cause a subarachnoid hemorrhage.
Diagnosis may be suspected from one, some, or all of the following: new onset flank pain or red urine; a positive family history; palpation of enlarged kidneys on physical exam; an incidental finding on abdominal sonogram; or an incidental finding of abnormal kidney function on routine lab work (BUN, serum creatinine, or eGFR). Definitive diagnosis is made by abdominal CT exam.
Complications include hypertension due to the activation of the renin–angiotensin–aldosterone system (RAAS), frequent cyst infections, urinary bleeding, and declining renal function. Hypertension is treated with angiotensin converting enzyme inhibitors (ACEIs) or angiotensin receptor blockers (ARBs). Infections are treated with antibiotics. Declining renal function is treated with renal replacement therapy (RRT): dialysis and/or transplantation. Management from the time of the suspected or definitive diagnosis is by a board-certified nephrologist.
Autosomal dominant polycystic kidney disease (ADPKD) is the most prevalent, potentially lethal, monogenic human disorder. It is associated with large interfamilial and intrafamilial variability, which can be explained to a large extent by its genetic heterogeneity and modifier genes. It is also the most common of the inherited cystic kidney diseases — a group of disorders with related but distinct pathogenesis, characterized by the development of renal cysts and various extrarenal manifestations, which in case of ADPKD include cysts in other organs, such as the liver, seminal vesicles, pancreas, and arachnoid membrane, as well as other abnormalities, such as intracranial aneurysms and dolichoectasias, aortic root dilatation and aneurysms, mitral valve prolapse, and abdominal wall hernias. Over 50% of patients with ADPKD eventually develop end stage kidney disease and require dialysis or kidney transplantation. ADPKD is estimated to affect at least 1 in every 1000 individuals worldwide, making this disease the most common inherited kidney disorder with a diagnosed prevalence of 1:2000 and incidence of 1:3000-1:8000 in a global scale.
Cystic kidney disease refers to a wide range of hereditary, developmental, and acquired conditions. With the inclusion of neoplasms with cystic changes, over 40 classifications and subtypes have been identified. Depending on the disease classification, the presentation of disease may be from birth, or much later into adult life. Cystic disease may involve one or both kidneys and may or may not occur in the presence of other anomalies. A higher incidence of cystic kidney disease is found in the male population and prevalence increases with age. Renal cysts have been reported in more than 50% of patients over the age of 50. Typically, cysts grow up to 2.88 mm annually and cause related pain and/or hemorrhage.
Of the cystic kidney diseases, the most common is Polycystic kidney disease; having two prevalent sub-types: autosomal recessive and autosomal dominant polycystic kidney disease. Autosomal Recessive Polycystic Kidney Disease (ARPKD) is primarily diagnosed in infants and young children. Autosomal dominant polycystic kidney disease (ADPKD) is most often diagnosed in adulthood.
Another example of cystic kidney disease is Medullary sponge kidney.
Autosomal recessive polycystic kidney disease (ARPKD) is the recessive form of polycystic kidney disease. It is associated with a group of congenital fibrocystic syndromes. Mutations in the "PKHD1" (chromosomal locus 6p12.2) cause ARPKD.
Many forms of cystic kidney disease can be detected in children prior to birth. Abnormalities which only affect one kidney are unlikely to cause a problem with the healthy arrival of a baby. Abnormalities which affect both kidneys can have an effect on the baby's amniotic fluid volume which can in turn lead to problems with lung development. Some forms of obstruction can be very hard to differentiate from cystic renal disease on early scans.
Usually, the diagnosis of ADPKD is initially performed by renal imaging using ultrasound, CT scan, or MRI. However, molecular diagnostics can be necessary in the following situations: 1- when a definite diagnosis is required in young individuals, such as a potential living related donor in an affected family with equivocal imaging data; 2- in patients with a negative family history of ADPKD, because of potential phenotypic overlap with several other kidney cystic diseases; 3- in families affected by early-onset polycystic kidney disease, since in this cases hypomorphic alleles and/or oligogenic inheritance can be involved; and 4- in patients requesting genetic counseling, especially in couples wishing a pre-implantation genetic diagnosis.
The findings of large echogenic kidneys without distinct macroscopic cysts in an infant/child at 50% risk for ADPKD are diagnostic. In the absence of a family history of ADPKD, the presence of bilateral renal enlargement and cysts, with or without the presence of hepatic cysts, and the absence of other manifestations suggestive of a different renal cystic disease provide presumptive, but not definite, evidence for the diagnosis. In some cases, intracranial aneurysms can be an associated sign of ADPKD, and screening can be recommended for patients with a family history of intracranial aneurysm.
Molecular genetic testing by linkage analysis or direct mutation screening is clinically available; however, genetic heterogeneity is a significant complication to molecular genetic testing. Sometimes a relatively large number of affected family members need to be tested in order to establish which one of the two possible genes is responsible within each family. The large size and complexity of PKD1 and PKD2 genes, as well as marked allelic heterogeneity, present obstacles to molecular testing by direct DNA analysis. The sensitivity of testing is nearly 100% for all patients with ADPKD who are age 30 years or older and for younger patients with PKD1 mutations; these criteria are only 67% sensitive for patients with PKD2 mutations who are younger than age 30 years.
VBD
- Hemifacial spasm
- Paresis
- Trigeminal neuralgia
ICD
- Progressive visual field defect
The term dolichoectasia means elongation and distension. It is used to characterize arteries throughout the human body which have shown significant deterioration of their tunica intima (and occasionally the tunica media), weakening the vessel walls and causing the artery to elongate and distend.
The classic symptom of subarachnoid hemorrhage is thunderclap headache (a headache described as "like being kicked in the head", or the "worst ever", developing over seconds to minutes). This headache often pulsates towards the occiput (the back of the head). About one-third of people have no symptoms apart from the characteristic headache, and about one in ten people who seek medical care with this symptom are later diagnosed with a subarachnoid hemorrhage. Vomiting may be present, and 1 in 14 have seizures. Confusion, decreased level of consciousness or coma may be present, as may neck stiffness and other signs of meningism.
Neck stiffness usually presents six hours after initial onset of SAH. Isolated dilation of a pupil and loss of the pupillary light reflex may reflect brain herniation as a result of rising intracranial pressure (pressure inside the skull). Intraocular hemorrhage (bleeding into the eyeball) may occur in response to the raised pressure: subhyaloid hemorrhage (bleeding under the hyaloid membrane, which envelops the vitreous body of the eye) and vitreous hemorrhage may be visible on fundoscopy. This is known as Terson syndrome (occurring in 3–13 percent of cases) and is more common in more severe SAH.
Oculomotor nerve abnormalities (affected eye looking downward and outward and inability to lift the eyelid on the same side) or (loss of movement) may indicate bleeding from the posterior communicating artery. Seizures are more common if the hemorrhage is from an aneurysm; it is otherwise difficult to predict the site and origin of the hemorrhage from the symptoms. SAH in a person known to have seizures is often diagnostic of a cerebral arteriovenous malformation.
The combination of intracerebral hemorrhage and raised intracranial pressure (if present) leads to a "sympathetic surge", i.e. over-activation of the sympathetic system. This is thought to occur through two mechanisms, a direct effect on the medulla that leads to activation of the descending sympathetic nervous system and a local release of inflammatory mediators that circulate to the peripheral circulation where they activate the sympathetic system. As a consequence of the sympathetic surge there is a sudden increase in blood pressure; mediated by increased contractility of the ventricle and increased vasoconstriction leading to increased systemic vascular resistance. The consequences of this sympathetic surge can be sudden, severe, and are frequently life-threatening. The high plasma concentrations of adrenaline also may cause cardiac arrhythmias (irregularities in the heart rate and rhythm), electrocardiographic changes (in 27 percent of cases) and cardiac arrest (in 3 percent of cases) may occur rapidly after the onset of hemorrhage. A further consequence of this process is neurogenic pulmonary edema where a process of increased pressure within the pulmonary circulation causes leaking of fluid from the pulmonary capillaries into the air spaces, the alveoli, of the lung.
Subarachnoid hemorrhage may also occur in people who have had a head injury. Symptoms may include headache, decreased level of consciousness and hemiparesis (weakness of one side of the body). SAH is a frequent occurrence in traumatic brain injury, and carries a poor prognosis if it is associated with deterioration in the level of consciousness.
While thunderclap headache is the characteristic symptom of subarachnoid hemorrhage, less than 10% of those with concerning symptoms have SAH on investigations. A number of other causes may need to be considered.
Subarachnoid hemorrhage (SAH) is bleeding into the subarachnoid space — the area between the arachnoid membrane and the pia mater surrounding the brain. Symptoms may include a severe headache of rapid onset, vomiting, decreased level of consciousness, fever, and sometimes seizures. Neck stiffness or neck pain are also relatively common. In about a quarter of people a small bleed with resolving symptoms occurs within a month of a larger bleed.
SAH may occur as a result of a head injury or spontaneously, usually from a ruptured cerebral aneurysm. Risk factors for spontaneous cases included high blood pressure, smoking, family history, alcoholism, and cocaine use. Generally, the diagnosis can be determined by a CT scan of the head if done within six hours. Occasionally a lumbar puncture is also required. After confirmation further tests are usually performed to determine the underlying cause.
Treatment is by prompt neurosurgery or radiologically guided interventions. Medications such as labetalol may be required to lower the blood pressure until repair can occur. Efforts to treat fevers are also recommended. Nimodipine, a calcium channel blocker, is frequently used to prevent vasospasm. Routine use medications to prevent further seizures is of unclear benefit. Nearly half of people with a SAH due to an underlying aneurysm die within 30 days and about a third who survive have ongoing problems. 10–15 percent die before reaching a hospital.
Spontaneous SAH occurs in about one per 10,000 people per year. Females are more commonly affected than males. While it becomes more common with age, about 50% of people present under 55 years old. It is a form of stroke and comprises about 5 percent of all strokes. Surgery for aneurysms was introduced in the 1930s. Since the 1990s many aneurysms are treated by a less invasive procedure called "coiling", which is carried out through a large blood vessel.