Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The symptoms and prognosis of tetrasomy 9p are highly variable. The severity of the symptoms is largely determined by the size of the isochromosome, the specific regions of chromosome 9p that are duplicated, as well as the number and type of tissues that are affected in the mosaic form.
Most patients exhibit some degree of intellectual disability, abnormal skeletal and muscular development, and abnormal facial structures. Cognitive symptoms range from slight learning disabilities to severe deficits in intellectual functioning. Due to abnormal development of the muscles, individuals often experience limited or delayed mobility. Atypical facial features are characteristic of the syndrome, including widely spaced eyes, a large nose, and unusually positioned ears. Additionally, patients often have extra skin around the neck and widely spaced nipples. A wide range of renal, digestive, cardiac, respiratory, and nervous system abnormalities have been observed.
Though rare, a few cases of phenotypically normal individuals with tetrasomy 9p have been documented.
The features associated with this condition include: mild to moderate learning difficulties, short stature, unique facial features, small head and skeletal abnormalities including bony growths projecting from the surfaces of bones. Typically individuals with Langer–Giedion syndrome have fine scalp hair, ears that may be large or prominent, broad eyebrows, deep-set eyes, a bulbous nose, long narrow upper lip, and missing teeth.
Potocki–Shaffer syndrome (PSS), also known as DEFECT11 syndrome or chromosome 11p11.2 deletion syndrome, is a rare contiguous gene syndrome that results from the microdeletion of section 11.2 on the short arm of chromosome 11 (11p11.2). The syndrome has its name from Dr. Lorraine (Lori) Potocki and Dr. Lisa Shaffer who discovered the deletion on the 11th chromosome and studied the impacts.
The deletion of this combination of genes results in several distinctive congenital features, occasional defects in the heart, kidneys, and urinary tract. The disorder is associated with an enlarged parietal foramina which can cause openings in the two bones that form the top and sides of the skull. These abnormal openings form extra "soft spots" on the head, in addition to the two that newborns normally have, and unlike the usual newborn soft spots, the enlarged parietal foramina remain open throughout life. Other signs can include multiple mostly noncancerous benign bone tumours called osteochondromas (exostosis), developmental delay, vision disorders and craniofacial abnormalities. It is classified as a rare disease.
The signs and symptoms of Potocki–Shaffer syndrome vary widely. In addition to multiple osteochondromas and enlarged parietal foramina, affected individuals often have intellectual disability and delayed development of speech, motor skills (such as sitting and walking), and social skills. Many people with this condition have distinctive facial features, which can include a wide, short skull (brachycephaly); a prominent forehead; a narrow bridge of the nose; a shortened distance between the nose and upper lip (a short philtrum); and a downturned mouth. Less commonly, Potocki–Shaffer syndrome causes vision problems, additional skeletal abnormalities, and defects in the heart, kidneys, and urinary tract.
Almost all patients with this syndrome have some degree of mental retardation and facial dysmorphism (round face, deep-set eyes, thin upper lip). Behavioural problems are common. Brachymetaphalangism (metacarpal or metatarsal shortening) is reported in ~50% of cases overall, but is typically not evident below the age of 2 years. There is striking phenotypic variability, and the size and extent of the deleted region cannot be used as accurate predictors of prognosis. Some patients have additional problems such as congenital heart disease and seizures.
ATR-16 syndrome affects the blood, development, and brain; symptoms vary based on the specific genes deleted on chromosome 16. Because it is so rare, it is difficult to determine the "core" symptoms of the disease. People with ATR-16 have alpha-thalassemia, a blood disorder where there is less normal hemoglobin in the blood than there should be, and the red blood cells are smaller than they should be (microcytic anemia). Affected children have various characteristic physical features, including clubfoot, "locked" little fingers, microcephaly (small head), hypertelorism (widely spaced eyes), broad, prominent nose bridge, downward-slanted palpebral fissures, small ears, retrognathia, and short neck. Children with ATR-16 syndrome also have mild to moderate intellectual disabilities, developmental delays/growth delays, and speech delays. Some children with ATR-16 have seizures, cryptorchidism (undescended testes), or hypospadias.
The syndrome gets its name from the characteristic cry of affected infants, which is similar to that of a meowing kitten, due to problems with the larynx and nervous system. About 1/3 of children lose the cry by age of 2 years. Other symptoms of cri du chat syndrome may include:
- feeding problems because of difficulty in swallowing and sucking;
- low birth weight and poor growth;
- severe cognitive, speech, and motor delays;
- behavioral problems such as hyperactivity, aggression, outbursts, and repetitive movements;
- unusual facial features which may change over time;
- excessive drooling;
- small head and jaw;
- wide eyes;
- skin tags in front of eyes.
Other common findings include hypotonia, microcephaly, growth retardation, a round face with full cheeks, hypertelorism, epicanthal folds, down-slanting palpebral fissures, strabismus, flat nasal bridge, down-turned mouth, micrognathia, low-set ears, short fingers, single palmar creases, and cardiac defects (e.g., ventricular septal defect [VSD], atrial septal defect [ASD], patent ductus arteriosus [PDA], tetralogy of Fallot). Infertility is not associated with Cri du chat.
It has also been observed that people with the condition have difficulties communicating. While levels of proficiency can range from a few words to short sentences, it is often recommended by medical professionals for the child to undergo some sort of speech therapy/aid with the help of a professional.
Less frequently encountered findings include cleft lip and palate, preauricular tags and fistulas, thymic dysplasia, intestinal malrotation, megacolon, inguinal hernia, dislocated hips, cryptorchidism, hypospadias, rare renal malformations (e.g., horseshoe kidneys, renal ectopia or agenesis, hydronephrosis), clinodactyly of the fifth fingers, talipes equinovarus, pes planus, syndactyly of the second and third fingers and toes, oligosyndactyly, and hyperextensible joints. The syndrome may also include various dermatoglyphics, including transverse flexion creases, distal axial triradius, increased whorls and arches on digits, and a single palmar crease.
Late childhood and adolescence findings include significant intellectual disability, microcephaly, coarsening of facial features, prominent supraorbital ridges, deep-set eyes, hypoplastic nasal bridge, severe malocclusion, and scoliosis.
Affected females reach puberty, develop secondary sex characteristics, and menstruate at the usual time. The genital tract is usually normal in females except for a report of a bicornuate uterus. In males, testes are often small, but spermatogenesis is thought to be normal.
The brain is abnormally smooth, with fewer folds and grooves. The face, especially in children, has distinct characteristics including a short nose with upturned nares, thickened upper lip with a thin vermilion upper border, frontal bossing, small jaw, low-set posteriorily rotated ears, sunken appearance in the middle of the face, widely spaced eyes, and hypertelorism. The forehead is prominent with bitemporal hollowing.
Characteristics that are not visual include mental retardation, pre- and postnatal growth retardation, epilepsy, and reduced lifespan.
Failure to thrive, feeding difficulties, seizures and decreased spontaneous activity are often seen. Death usually occurs in infancy and childhood.
Multiple abnormalities of the brain, kidneys, and gastrointestinal tract (the stomach and intestines) may occur.
The most frequent reported symptoms in patients with duplication of 22q11.2 duplication syndrome are mental retardation/learning disabilility (97% of patients), delayed psychomotor development (67% of patients), growth retardation (63% of patients) and muscular hypotonia (43% of patients). However, these are common and relatively non-specific indications for cytogenetic analysis, and the extent to which the duplication of 22q11.2 causes these features is currently unknown. The duplication is frequently inherited from a normal parent, so it is clear that intellectual development can be normal.
8p23.1 duplication syndrome is a rare genetic disorder caused by a duplication of a region from human chromosome 8. This duplication syndrome has an estimated prevalence of 1 in 64,000 births and is the reciprocal of the 8p23.1 deletion syndrome. The 8p23.1 duplication is associated with a variable phenotype including one or more of speech delay, developmental delay, mild dysmorphism, with prominent forehead and arched eyebrows, and congenital heart disease (CHD).
Physical Symptoms
- Heart Defects
- Characteristics of Autism
- Genital defects (in males)
- Childhood hypotonia
- Respiratory infections
- Motor Delay
- Renal defects
Behavioural Symptoms
- Passiveness
- Sociability
- Aggression
- Biting, and/or hitting
- Moodiness
- Disliking routine changes
Recognised symptoms up till now are:
- Autism or autistic behaviors
- ADHD
- Learning disability
- Large head
- Dysmorphic facial appearance - mild
- Prominent forehead
- Wide-set eyes (hypertelorism)
- Schizophrenia
- Loose joints
- GERD
- Sleep disturbances
- Sleep Apnea
- Underdeveloped parts of brain - corpus callosum and cerebellar vermis
- Neuroblastoma
- Speech & developmental delays
- Chiari malformation of the brain
- Congenital heart defects
- Hypotonia
It is not clear whether the list of symptoms is complete. Very little information is known about the syndrome. The symptomology may be different among individuals, even in the same family.
Tetrasomy 9p (also known Tetrasomy 9p Syndrome) is a rare chromosomal disorder characterized by the presence of two extra copies of the short arm of chromosome 9 (called the p arm), in addition to the usual two. Symptoms of tetrasomy 9p vary widely among affected individuals, but typically include varying degrees of delayed growth, abnormal facial features, and intellectual disability. Symptoms of the disorder are comparable to those of trisomy 9p.
Recognised symptoms are:
- Only one set of genes on the two chromosomes function (Haploinsufficiency)
- Thrombocytopenia-absent radius (TAR syndrome), in case of a class II-deletion
- Neurological-psychiatric problems: Autism; schizophrenia; epilepsy; learning problems; cognitive disabilities — mild to moderate; developmental delay — mild to moderate (milestones like sitting, standing and walking; come at a later period in childhood); children show an ataxic gait and fall down a lot
- Dysmorphism: Slightly unusual facial appearance; disturbed growth; skeletal malformations; small head (microcephaly); prominent forehead; bulbous nose; deep-set eyes; broad thumbs; broad toes; squint; very flexible joints; clavicular pseudoarthrosis (the collarbone doesn't develop normally) (Class II-deletion); An extra transverse crease of the fifth finger (Class II-deletion)); Problems with the development of the vagina (Müllerian aplasia)
- Eyes: Cataracts
- Heart abnormalities and cardiovascular anomalies (30% of the cases): Anomalous origin of the coronary artery (Class II-deletion)
- Kidneys: Missing kidney or floating kidneys
- Cancer: Neuroblastoma
- Sleep disturbances
It is not clear whether the list of symptoms is complete. Very little information is known about the syndrome. The syndrome can have completely different effects on members of the same family.
A common deletion is between 1.0–1.9Mb. Mefford states that the standard for a deletion is 1.35Mb. The largest deletion seen on a living human is over 5 Mb.
The phenotypic data on 11 patients indicated that cases are not always ascertained for CHD but that CHD was the most common single feature found in 6 out of 11 individuals. Developmental delay and/or learning difficulties were found in 5 out of 11 cases, but one prenatal case was developing normally at 15 months of age (Case 1,). Three other prenatal cases could not yet be reliably assessed. A variable degree of facial dysmorphism was present in 5 out of 11 individuals. Partial toe syndactyly has been found in one mother and son diad and adrenal anomalies in two probands but not in the duplicated mother of one of them. The phenotype is compatible with independent adult life with varying degrees of support.
Duplication of the GATA4 transcription factor () is believed to underlie the congenital heart disease and other genes, common to the duplication and deletion syndromes, can be regarded as candidates for the 8p23.1 duplication syndrome. These include the SOX7 transcription factor () for both CHD and developmental delay and the TNKS gene () for behavioural difficulties. The diaphragmatic hernia found in the 8p23.1 deletion syndrome has not been found in the 8p23.1 duplication syndrome to date.
The duplication may be associated with copy number changes of the adjacent olfactory receptor/defensin repeats (ORDRs) that predispose to the 8p23.1 deletion and duplication syndromes. High total copy numbers of these repeats have been associated with predisposition to psoriasis and low copy number with predisposition to Crohn's disease.
Langer–Giedion syndrome (LGS) is a very uncommon autosomal dominant genetic disorder caused by a deletion of chromosomal material. It is named after the two doctors who undertook the main research into the condition in the 1960s. Diagnosis is usually made at birth or in early childhood.
The most common characteristics include a distinct craniofacial phenotype (microcephaly, micrognathia, short philtrum, prominent glabella, ocular hypertelorism, dysplastic ears and periauricular tags), growth restriction, intellectual disability, muscle hypotonia, seizures, and congenital heart defects. Less common characteristics include hypospadias, colobomata of the iris, renal anomalies, and deafness. Antibody deficiencies are also common, including common variable immunodeficiency and IgA deficiency. T-cell immunity is normal.
The clinical phenotype of 3q29 microdeletion syndrome is variable. Clinical features can include mild/moderate mental retardation with mildly dysmorphic facial features (long and narrow face, short philtrum and a high nasal bridge). Of the 6 reported patients, additional features including autism, ataxia, chest-wall deformity and long, tapering fingers were found in at least two patients. A review of 14 children with insterstitial deletions of 3q29, found 11 who had the common recurrent 1.6Mb deletion and displayed mental retardation and microcephaly.
The variability of phenotype is underscored by the report on a 6 and 9/12 year-old male patient with a de novo chromosome 3q29 microdeletion identified by BAC array comparative genomic hybridization assay (aCGH), with accompanying normal 46,XY high-resolution chromosome analysis. The patient has language-based learning disabilities and behavioral features consistent with diagnoses of autism and attention deficit hyperactivity disorder (ADHD) of the inattentive type. He also displays some other features previously associated with chromosome 3q29 microdeletion such as an elongated face, long fingers, and joint laxity. Most notably the patient, per formal IQ testing, was not found to have frank mental retardation as has been previously reported among patients with chromosome 3q29 terminal deletion, but rather the patient has demonstrated an average full-scale IQ result. This report further expands the phenotypic spectrum to include the possibility of normal intelligence as corroborated by formal, longitudinal psycho-educational testing.
The presence of two homologous low copy repeats either side of the deletion break-point suggests that non-allelic homologous recombination is the likely mechanism underlying this syndrome.
Symptoms vary, but usually result in dysmorphisms in the skull, nervous system, and developmental delay. Dysmorphisms in the heart, kidneys, and musculoskeletal system may also occur. An infant with complete trisomy 9 surviving 20 days after birth showed clinical features including a small face, wide fontanelle, prominent occiput, micrognathia, low set ears, upslanting palpebral fissures, high-arched palate, short sternum, overlapping fingers, limited hip abduction, rocker bottom feet, heart murmurs and also a webbed neck.
Trisomy 9p is one of the most frequent autosomal anomalies compatible with long survival rate. A study of five cases showed an association with Coffin–Siris syndrome, as well as a wide gap between the first and second toes in all five, while three had brain malformations including dilated ventricles with hypogenesis of the corpus callosum and Dandy-Walker malformation.
Different areas of deletion are associated with different symptoms. Deletions from the centromere to 13q32 or any deletions including the 13q32 band are associated with slow growth, intellectual disability, and congenital malformations. Deletions from 13q33 to the end of the chromosome are associated with intellectual disability. Intellectual disabilities range from very mild to very severe, and can co-occur with behavioral disorders and/or autism spectrum disorders.
At birth, the main symptoms include low weight (due to intrauterine growth restriction), hypotonia, and feeding difficulties. Infants may also have cleft palate.
13q deletion syndrome gives a characteristic appearance to affected individuals, potentially including microphthalmia (small eyes), hypertelorism (wide-set eyes), thin forehead, high palate, underdeveloped midface, small mouth, small nose, broad, flat nasal bridge, short neck, low hairline, irregular or wrongly positioned teeth, low-set ears, micrognathia (small jaw), tooth enamel defects, short stature, microcephaly (small head), a prominent, long philtrum, and earlobes turned inwards.
Congenital heart disease is associated with 13q deletion syndrome. Common defects include atrial septal defect, tetralogy of Fallot, ventricular septal defect, patent ductus arteriosus, pulmonary stenosis, and coarctation of the aorta. Defects of the endocrine system, digestive system, and genitourinary system are also common. These include underdevelopment or agenesis of the pancreas, adrenal glands, thymus, gallbladder, and thyroid; Hirschsprung's disease; gastric reflux, imperforate anus, retention testis, ectopic kidney, renal agenesis, and hydronephrosis.
A variety of brain abnormalities are also associated with 13q deletion. They can include epilepsy, craniosynostosis (premature closing of the skull bones), spastic diplegia, cerebral hypotrophy, underdevelopment or agenesis of the corpus callosum, cerebellar hypoplasia, deafness, and, rarely, hydrocephalus, Dandy–Walker syndrome, and spina bifida. The eyes can be severely damaged and affected individuals may be blind. They may also have coloboma of the iris or choroid, strabismus, nystagmus, glaucoma, or cataracts.
Other skeletal malformations are found with 13q deletion syndrome, including syndactyly, clubfoot, clinodactyly, and malformations of the vertebrae and/or thumbs.
Deletions that include the 13q32 band, which contains the brain development gene ZIC2, are associated with holoprosencephaly; they are also associated with hand and foot malformations. Deletions that include the 13q14 band, which contains the tumor suppressor gene Rb, are associated with a higher risk of developing retinoblastoma, which is more common in XY children. Deletion of the 13q33.3 band is associated with hypospadias. Other genes in the potentially affected region include NUFIP1, HTR2A, PDCH8, and PCDH17.
1q21.1 deletion syndrome or 1q21.1 (recurrent) microdeletion is a rare aberration of chromosome 1.
A human cell has one pair of identical chromosomes on chromosome 1. With the 1q21.1 deletion syndrome, one chromosome of the pair is not complete, because a part of the sequence of the chromosome is missing. One chromosome has the normal length and the other is too short.
In 1q21.1, the '1' stands for chromosome 1, the 'q' stands for the long arm of the chromosome and '21.1' stands for the part of the long arm in which the deletion is situated.
The syndrome is a form of the 1q21.1 copy number variations and it is a deletion in the distal area of the 1q21.1 part. The CNV leads to a very variable phenotype and the manifestations in individuals are quite variable. Some people who have the syndrome can function in a normal way, while others have symptoms of mental retardation and various physical anomalies.
1q21.1 microdeletion is a very rare chromosomal condition. Only 46 individuals with this deletion have been reported in medical literature as of August 2011.
1q21.1 duplication syndrome or 1q21.1 (recurrent) microduplication is a rare aberration of chromosome 1.
In a common situation a human cell has one pair of identical chromosomes on chromosome 1. With the 1q21.1 duplication syndrome one chromosome of the pair is over complete, because a part of the sequence of the chromosome is duplicated twice or more. In 1q21.1, the '1' stands for chromosome 1, the 'q' stands for the long arm of the chromosome and '21.1' stands for the part of the long arm in which the duplication is situated.
Next to the duplication syndrome, there is also a 1q21.1 deletion syndrome. While there are two or three copies of a similar part of the DNA on a particular spot with the duplication syndrome, there is a part of the DNA missing with the deletion syndrome on the same spot. Literature refers to both the deletion and the duplication as the 1q21.1 copy-number variations (CNV).
The CNV leads to a very variable phenotype and the manifestations in individuals are quite variable. Some people who have the syndrome can function in a normal way, while others have symptoms of mental retardation and various physical anomalies.
Cri du chat syndrome, also known as chromosome 5p deletion syndrome, 5p− syndrome (pronounced "Five P Minus") or Lejeune’s syndrome, is a rare genetic disorder due to chromosome deletion on chromosome 5. Its name is a French term ("cat-cry" or "call of the cat") referring to the characteristic cat-like cry of affected children. It was first described by Jérôme Lejeune in 1963. The condition affects an estimated 1 in 50,000 live births across all ethnicities and is more common in females by a 4:3 ratio.
Affected individuals present with a broad array of medical and behavioral manifestations (tables 1 and 2). Patients are consistently characterized by global developmental delay, intellectual disability, speech abnormalities, ASD-like behaviors, hypotonia and mild dysmorphic features. Table 1 summarizes the dysmorphic and medical conditions that have been reported in individuals with PMS. Table 2 summarize the psychiatric and neurological associated with PMS. Most of the studies include small samples or relied on parental report or medical record review to collect information, which can account in part for the variability in the presentation of some of the presenting features. Larger prospective studies are needed to further characterize the phenotype.
Table 1: Dysmorphic features and medical comorbid conditions that have been reported in individuals with Phelan McDermid Syndrome.
Table 2: Psychiatric and Neurologic Manifestations associated with Phelan McDermid Syndrome
The symptoms associated with this syndrome are variable, but common features include: low birthweight, low muscle tone at birth, poor feeding in infancy (often requiring feeding by tube for a period) and oromotor dyspraxia together with moderate developmental delays and learning disabilities but amiable behaviour. Other clinically important features include epilepsy, heart defects (atrial septal defect, ventricular septal defect) and kidney/urological anomalies. Silvery depigmentation of strands of hair have been noted in several patients. With age there is an apparent coarsening of facial features. 17q21.3 was reported simultaneously in 2006 by three independent groups, with each group reporting several patients, and is now recognised to be one of the more common recurrent microdeletion syndromes. Recently a patient with a small duplication in same segment of DNA has been described. An overview of the clinical features of the syndrome, by reviewing 22 individuals with a 17q21.31 microdeletion, estimated the disorder is present in one in every 16,000 people.
The three most common symptoms of Opitz G/BBB syndrome (both type I & II) are hypertelorism (exceptionally wide-spaced eyes), laryngo-tracheo-esophalgeal defects (including clefts and holes in the palate, larynx, trachea and esophagus) and hypospadias (urinary openings in males not at the tip of the penis) (Meroni, Opitz G/BBB syndrome, 2012). Abnormalities in the larynx, trachea and esophagus can cause significant difficulty breathing and/or swallowing and can result in reoccurring pneumonia and life-threatening situations. Commonly, there may be a gap between the trachea and esophagus, referred to as a laryngeal cleft; which can allow food or fluid to enter the airway and make breathing and eating a difficult task.
Genital abnormalities like a urinary opening under the penis (hypospadias), undescended testes (cryptorchidism), underdeveloped scrotum and a scrotum divided into two lobes (bifid scrotum) can all be commonplace for males with the disease.
Developmental delays of the brain and nervous system are also common in both types I and II of the disease. 50% of people with Opitz G/BBB Syndrome will experience developmental delay and mild intellectual disability. This can impact motor skills, speech and learning capabilities. Some of these instances are likened to autistic spectrum disorders. Close to half of the people with Opitz G/BBB Syndrome also have a cleft lip (hole in the lip opening) and possibly a cleft palate (hole in the roof of the mouth), as well. Less than half of the people diagnosed have heart defects, imperforate anus (obstructed anal opening), and brain defects. Of all the impairments, female carriers of X-linked Type I Opitz G/BBB Syndrome usually only have ocular hypertelorism.