Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Signs and symptoms of a biotinidase deficiency can appear several days after birth. These include seizures, hypotonia and muscle/limb weakness, ataxia, paresis, hearing loss, optic atrophy, skin rashes (including seborrheic dermatitis and psoriasis), and alopecia. If left untreated, the disorder can rapidly lead to coma and death.
Biotinidase deficiency can also appear later in life. This is referred to as "late-onset" biotinidase deficiency. The symptoms are similar, but perhaps more mild, because if an individual survives the neonatal period they likely have some residual activity of biotin-related enzymes. Studies have noted individuals who were asymptomatic until adolescence or early adulthood. One study pointed out that untreated individuals may not show symptoms until age 21. Furthermore, in rare cases, even individuals with profound deficiencies of biotinidase can be asymptomatic.
Symptom severity is predictably correlated with the severity of the enzyme defect. Profound biotinidase deficiency refers to situations where enzyme activity is 10% or less. Individuals with partial biotinidase deficiency may have enzyme activity of 10-30%.
Functionally, there is no significant difference between dietary biotin deficiency and genetic loss of biotin-related enzyme activity. In both cases, supplementation with biotin can often restore normal metabolic function and proper catabolism of leucine and isoleucine.
The symptoms of biotinidase deficiency (and dietary deficiency of biotin) can be quite severe. A 2004 case study from Metametrix detailed the effects of biotin deficiency, including aggression, cognitive delay, and reduced immune function.
Biotinidase deficiency is an autosomal recessive metabolic disorder in which biotin is not released from proteins in the diet during digestion or from normal protein turnover in the cell. This situation results in biotin deficiency.
Biotin, also called vitamin B, is an important water-soluble nutrient that aids in the metabolism of fats, carbohydrates, and proteins. Biotin deficiency can result in behavioral disorders, lack of coordination, learning disabilities and seizures. Biotin supplementation can alleviate and sometimes totally stop such symptoms.
Symptoms of enolase deficiency include exercise-induced myalgia and generalized muscle weakness and fatigability, both with onset in adulthood. Symptoms also include muscle pain without cramps, and decreased ability to sustain long term exercise.
Short-chain acyl-coenzyme A dehydrogenase deficiency affected infants will have vomiting, low blood sugar, a lack of energy (lethargy), poor feeding, and failure to gain weight and grow. Additional features of this disorder may include poor muscle tone (hypotonia), seizures, developmental delays, and microcephaly. The symptoms of short-chain acyl-CoA dehydrogenase deficiency may be triggered during illnesses such as viral infections. In some cases, signs and symptoms may not appear until adulthood, when some individuals may develop muscle weakness, while other individuals mild symptoms may never be diagnosed.
A variety of neurological symptoms have been associated with carnosinemia. They include: hypotonia, developmental delay, mental retardation, degeneration of axons, sensory neuropathy, tremors, demyelinization, gray matter anomalies, myoclonic seizures, and loss of purkinje fibers.
Dihydropyrimidine dehydrogenase deficiency (DPD deficiency) is an autosomal recessive
metabolic disorder in which there is absent or significantly decreased activity of dihydropyrimidine dehydrogenase, an enzyme involved in the metabolism of uracil and thymine.
Individuals with this condition may develop life-threatening toxicity following exposure to 5-fluorouracil (5-FU), a chemotherapy drug that is used in the treatment of cancer. Beside 5-FU, widely prescribed oral fluoropyrimidine capecitabine (Xeloda) could put DPD-deficient patients at risk of experiencing severe or lethal toxicities as well.
Tetrahydrobiopterin deficiency (THBD, BHD), also called THB or BH deficiency, is a rare metabolic disorder that increases the blood levels of phenylalanine. Phenylalanine is an amino acid obtained through the diet. It is found in all proteins and in some artificial sweeteners. If tetrahydrobiopterin deficiency is not treated, excess phenylalanine can build up to harmful levels in the body, causing intellectual disability and other serious health problems.
High levels of phenylalanine are present from infancy in people with untreated tetrahydrobiopterin (THB, BH) deficiency. The resulting signs and symptoms range from mild to severe. Mild complications may include temporary low muscle tone. Severe complications include intellectual disability, movement disorders, difficulty swallowing, seizures, behavioral problems, progressive problems with development, and an inability to control body temperature.
It was first characterized in 1975.
This disorder causes neurological problems, including mental retardation, brain atrophy and ventricular dilation, myoclonus, hypotonia, and epilepsy.
It is also associated with growth retardation, megaloblastic anemia, pectus excavatum, scoliosis, vomiting, diarrhea, and hepatosplenomegaly.
Symptoms of congenital Type III Galactosemia are apparent from birth, but vary in severity depending on whether the peripheral or generalized disease form is present. Symptoms may include:
- Infantile jaundice
- Infantile hypotonia
- Dysmorphic features
- Sensorineural hearing loss
- Impaired growth
- Cognitive deficiencies
- Depletion of cerebellar Purkinje cells
- Ovarian failure (POI) and hypertrophic hypergonadism
- Liver failure
- Renal failure
- Splenomegaly
- Cataracts
Studies of Type III galactosemia symptoms are mostly descriptive, and precise pathogenic mechanisms remain unknown. This is largely due to a lack of functional animal models of classic galactosemia. The recent development of a "Drosophila melanogaster" GALE mutant exhibiting galactosemic symptoms may yield a promising future animal model.
In addition to the symptoms associated with immunodeficiency, such as depletion of T-cells, decline of lymphocyte activity, and an abrupt proliferation of both benign and opportunistic infections — PNP-deficiency is often characterized by the development of autoimmune disorders. lupus erythematosus, autoimmune hemolytic anemia, and idiopathic thrombocytopenic purpura have been reported with PNP-deficiency.
Neurological symptoms, such as developmental decline, hypotonia, and mental retardation have also been reported.
Fumarase deficiency causes encephalopathy, severe mental retardation, unusual facial features, brain malformation, and epileptic seizures due to an abnormally low amount of fumarase in cells. It can initially present with polyhydramnios on prenatal ultrasound. Affected neonates may demonstrate nonspecific signs of poor feeding and hypotonia. Laboratory findings in neonates may indicate polycythemia, leukopenia, or neutropenia. As they age, neurological deficits begin to manifest with seizures, dystonias, and severe developmental delay.
Enolase Deficiency is a rare genetic disorder of glucose metabolism. Partial deficiencies have been observed in several caucasian families. The deficiency is transmitted through an autosomal dominant inheritance pattern. The gene for Enolase 1 has been localized to Chromosome 1 in humans. Enolase deficiency, like other glycolytic enzyme deficiences, usually manifests in red blood cells as they rely entirely on anaerobic glycolysis. Enolase deficiency is associated with a spherocytic phenotype and can result in hemolytic anemia, which is responsible for the clinical signs of Enolase deficiency.
Galactose epimerase deficiency, also known as GALE deficiency, Galactosemia III and UDP-galactose-4-epimerase deficiency, is a rare, autosomal recessive form of galactosemia associated with a deficiency of the enzyme "galactose epimerase".
This defect leads to a multi-systemic disorder of the connective tissue, muscles, central nervous system (CNS), and cardiovascular system. Homocystinuria represents a group of hereditary metabolic disorders characterized by an accumulation of the amino acid homocysteine in the serum and an increased excretion of homocysteine in the urine. Infants appear to be normal and early symptoms, if any are present, are vague.
Signs and symptoms of homocystinuria that may be seen include the following:
Carnosinemia, also called carnosinase deficiency or aminoacyl-histidine dipeptidase deficiency, is a rare autosomal recessive metabolic disorder caused by a deficiency of "carnosinase", a dipeptidase (a type of enzyme that splits dipeptides into their two amino acid constituents).
Carnosine is a dipeptide composed of beta-alanine and histidine, and is found in skeletal muscle and cells of the nervous system. This disorder results in an excess of carnosine in the urine, cerebrospinal fluid (CSF), blood and nervous tissue. Neurological disorders associated with a deficiency of carnosinase, and the resulting carnosinemia ("carnosine in the blood") are common.
Copper deficiency can cause a wide variety of neurological problems including, myelopathy, peripheral neuropathy, and optic neuropathy.
The presentation of mitochondrial trifunctional protein deficiency may begin during infancy, features that occur are: low blood sugar, weak muscle tone, and liver problems. Infants with this disorder are at risk for heart problems, breathing difficulties, and pigmentary retinopathy. Signs and symptoms of mitochondrial trifunctional protein deficiency that may begin "after" infancy include hypotonia, muscle pain, a breakdown of muscle tissue, and a loss of sensation in the extremities called peripheral neuropathy. Some who have MTP deficiency show a progressive course associated with myopathy, and recurrent rhabdomyolysis.
Galactokinase deficiency, also known as Galactosemia type 2 or GALK deficiency, is an autosomal recessive metabolic disorder marked by an accumulation of galactose and galactitol secondary to the decreased conversion of galactose to galactose-1-phosphate by galactokinase. The disorder is caused by mutations in the GALK1 gene, located on chromosome 17q24. Galactokinase catalyzes the first step of galactose phosphorylation in the Leloir pathway of intermediate metabolism. Galactokinase deficiency is one of the three inborn errors of metabolism that lead to hypergalactosemia. The disorder is inherited as an autosomal recessive trait. Unlike classic galactosemia, which is caused by deficiency of galactose-1-phosphate uridyltransferase, galactokinase deficiency does not present with severe manifestations in early infancy. Its major clinical symptom is the development of cataracts during the first weeks or months of life, as a result of the accumulation, in the lens, of galactitol, a product of an alternative route of galactose utilization. The development of early cataracts in homozygous affected infants is fully preventable through early diagnosis and treatment with a galactose-restricted diet. Some studies have suggested that, depending on milk consumption later in life, heterozygous carriers of galactokinase deficiency may be prone to presenile cataracts at 20–50 years of age.
Short-chain acyl-coenzyme A dehydrogenase deficiency (SCADD), also called ACADS deficiency and SCAD deficiency, is an autosomal recessive fatty acid oxidation disorder which affects enzymes required to break down a certain group of fats called short chain fatty acids.
The defining characteristic of this form of the disorder is hemolytic anemia, in which red blood cells break down prematurely. Muscle weakness and pain are not as common in patients with hemolytic PFK deficiency.
Classic phosphofructokinase deficiency is the most common type of this disorder. This type presents with exercise-induced muscle cramps and weakness (sometimes rhabdomyolysis), myoglobinuria, as well as with haemolytic anaemia causing dark urine a few hours later.
Hyperuricemia is common, due to the kidneys' inability to process uric acid following damage resulting from processing myoglobin. Nausea and vomiting following strenuous exercise is another common indicator of classic PFK deficiency. Many patients will also display high levels of bilirubin, which can lead to a jaundiced appearance. Symptoms for this type of PFK deficiency usually appear in early childhood.
Magnesium deficiency is a nutritional deficiency which can affect both plants and animals
Magnesium deficiency may refer to:
- Magnesium deficiency (plants)
- Magnesium deficiency (medicine)
- For the specific condition of low blood magnesium levels, see Hypomagnesemia
Another common symptom of copper deficiency is peripheral neuropathy, which is numbness or tingling that can start in the extremities and can sometimes progress radially inward towards the torso. In an Advances in Clinical Neuroscience & Rehabilitation (ACNR) published case report, a 69-year-old patient had progressively worsened neurological symptoms. These symptoms included diminished upper limb reflexes with abnormal lower limb reflexes, sensation to light touch and pin prick was diminished above the waist, vibration sensation was lost in the sternum, and markedly reduced proprioception or sensation about the self’s orientation. Many people suffering from the neurological effects of copper deficiency complain about very similar or identical symptoms as the patient. This numbness and tingling poses danger for the elderly because it increases their risk of falling and injuring themselves. Peripheral neuropathy can become very disabling leaving some patients dependent on wheel chairs or walking canes for mobility if there is lack of correct diagnosis. Rarely can copper deficiency cause major disabling symptoms. The deficiency will have to be present for an extensive amount of time until such disabling conditions manifest.
The term fatty acid oxidation disorder (FAOD) is sometimes used, especially when there is an emphasis on the oxidation of the fatty acid.
In addition to the fetal complications, they can also cause complications for the mother during pregnancy.
Examples include:
- trifunctional protein deficiency
- MCADD, LCHADD, and VLCADD
As with several other metabolic conditions, OTC deficiency can have variable presentations, regarding age of onset and the severity of symptoms. This compounded when considering heterozygous females and the possibility of non-random X-inactivation. In the classic and most well-known presentation, a male infant appears well initially, but by the second day of life they are irritable, lethargic and stop feeding. A metabolic encephalopathy develops, and this can progress to coma and death without treatment. Ammonia is only toxic to the brain, other tissues can handle elevated ammonia concentrations without problems.
Later onset forms of OTC deficiency can have variable presentations. Although late onset forms of the disease are often considered milder than the classic infantile presentation, any affected individual is at risk for an episode of hyperammonemia that could still be life-threatening, if presented with the appropriate stressors. These patients will often present with headaches, nausea, vomiting, delayed growth and a variety of psychiatric symptoms (confusion, delirium, aggression, or self-injury). A detailed dietary history of an affected individual with undiagnosed OTC deficiency will often reveal a history of protein avoidance.
The prognosis of a patient with severe OTC deficiency is well correlated with the length of the hyperammonemic period rather than the degree of hyperammonemia or the presence of other symptoms, such as seizures. Even for patients with late onset forms of the disease, their overall clinical picture is dependent on the extent of hyperammonemia they have experienced, even if it has remained unrecognized.