Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Aneuploidy is often fatal, but in this case there is "X-inactivation" where the effect of the additional gene dosage due to the presence of extra X chromosomes is greatly reduced.
Much like Down syndrome, the mental effects of 49,XXXXY syndrome vary. Impaired speech and behavioral problems are typical. Those with 49,XXXXY syndrome tend to exhibit infantile secondary sex characteristics with sterility in adulthood and have some skeletal anomalies. Skeletal anomalies include:
- Genu valgum
- Pes cavus
- Fifth finger clinodactyly
The effects also include:
- Cleft palate
- Club feet
- Respiratory conditions
- Short or/and broad neck
- Low birth weight
- Hyperextensible joints
- Short stature
- Narrow shoulders
- Coarse features in older age
- Hypertelorism
- Epicanthal folds
- Prognathism
- Gynecomastia (rare)
- Muscular hypotonia
- Hypoplastic genitalia
- Cryptorchidism
- Congenital heart defects
- A very round face in infancy
The main characteristics of 49,XXXXX are intellectual disability, short stature and craniofacial abnormalities. Other physical traits include the following:
- Small head
- Ear abnormalities
- Widely spaced eyes with upward slanting palpebral fissures and epicanthal folds
- Short neck
- Broad nose with a depressed nasal bridge
- Hyperextension of the elbows
- Dental abnormalities and cleft palate
- Clinodactyly of the 5th finger
- Deformities of the feet
- Heart defects
49,XXXXY syndrome is an extremely rare aneuploidic sex chromosomal abnormality. It occurs in approximately 1 out of 85,000 to 100,000 males.
49,XXXXX, also known as pentasomy X, penta X, or XXXXX syndrome, is a chromosomal aneuploidy where females have five X chromosomes rather than the normal two. It is unclear exactly how rare it is, but it appears to affect fewer than 1 in 100,000 women.
The severity of symptoms of idic(15) vary greatly between individuals. Individuals with idic(15) usually have delays in language development and motor skills such as walking or sitting up. Other traits may include low muscle tone (hypotonia), seizures (>50%), short stature, and intellectual disability. Distinctive facial features associated with idic(15), where present, are usually very subtle but may include epicanthal folds (skin folds at the inner corners of one or both eyes), broad forehead, a flattened nasal bridge, button nose, and a high arched palate (roof of the mouth). Many individuals with idic(15) display features of autism, such as problems with communication and social interactions, obsessional interests (often with interactive mechanisms like wheels, doors or switches), unpredictable sleep cycles (and a reduced need for sleep), and repetitive and stereotyped behaviors (e.g., lining up toys, playing with a toy in the same manner over and over again, hand flapping, rocking back and forth). A high pain threshold is often observed. If speech develops, it is often echolalic but some individuals do grasp some language. With a severely affected person there may be an inability to walk or talk.
Males with 48, XXXY can have average or tall stature, which becomes more prominent in adulthood. Facial dysmorphism is common in males with 48, XXXY and can include increased distance between the eyes (hypertelorism), skin folds of the upper eyelid (epicanthal folds), up-slanting opening between the eyelids (palpebral fissures) and hooded eyelids. Other physical features include the fifth finger or "pinky" to be bent inwards towards the fourth finger (clinodactyly), short nail beds, flat feet, double jointedness (hyperextensibility) and prominent elbows with cubitus varus where the arm rests closer to the body. Musculoskeletal features may include congentical elbow dislocation and the limited ability of the feet to roll inwards while walking and upon landing. Micropenis is another common symptom of this syndrome.
Individuals affected with XXXY are also prone to developing Taurodontism, which often presents early in life, and can be an early indicator of XXY syndrome. Those with this syndrome are also prone to hip dysplasia, and other joint abnormalities. An individual’s symptoms vary due to differing androgen deficiencies, and also with alter with age. Prepubescent boys with XXXY syndrome may not differ in physical appearance from a child without the syndrome. This is likely because androgen levels do not differ among pre-pubescent boys, but a difference does arise as puberty progresses. Those with XXXY syndrome may also experience feminine distribution of adipose tissue, and gynecomastia may also be present. Tall stature is more likely to appear in adolescence, when androgen levels begin to differ between those with XXXY syndrome and those that do not have it.
Heart abnormalities are present in 25–35% of people with distal 18q-. The majority of these defects are septal. Congenital orthopedic anomalies are also relatively common, particularly rocker-bottom feet or clubfoot. Cleft lip and palate are relatively common in people with distal 18q-. Kidney abnormalities have also been reported and include horseshoe kidney, hydronephrosis, polycystic kidney, and absent kidney. Boys with distal 18q- may have genital anomalies, the most frequent being cryptorchidism and hypospadias.
Common facial features include midfacial hypoplasia, short and downward- or upward-slanting palpebral fissures, epicanthic folds, and low-set ears with a prominent antihelix.
Children born with Edwards syndrome may have some or all of these characteristics: kidney malformations, structural heart defects at birth (i.e., ventricular septal defect, atrial septal defect, patent ductus arteriosus), intestines protruding outside the body (omphalocele), esophageal atresia, intellectual disability, developmental delays, growth deficiency, feeding difficulties, breathing difficulties, and arthrogryposis (a muscle disorder that causes multiple joint contractures at birth).
Some physical malformations associated with Edwards syndrome include small head (microcephaly) accompanied by a prominent back portion of the head (occiput), low-set, malformed ears, abnormally small jaw (micrognathia), cleft lip/cleft palate, upturned nose, narrow eyelid folds (palpebral fissures), widely spaced eyes (ocular hypertelorism), drooping of the upper eyelids (ptosis), a short breast bone, clenched hands, choroid plexus cysts, underdeveloped thumbs and/or nails, absent radius, webbing of the second and third toes, clubfoot or rocker bottom feet, and in males, undescended testicles.
"In utero", the most common characteristic is cardiac anomalies, followed by central nervous system anomalies such as head shape abnormalities. The most common intracranial anomaly is the presence of choroid plexus cysts, which are pockets of fluid on the brain. These are not problematic in themselves, but their presence may be a marker for trisomy 18. Sometimes, excess amniotic fluid or polyhydramnios is exhibited.
Those with XXXY syndrome can have testicular dysgenesis and hypergonadotrophic hypogonadism. Testicular dygenesis is a condition in which a male has incomplete or complete loss of spermatogenesis, so that the individual produces very low levels, or no sperm. This results in infertility of that individual. Hypergonadotrophic hypogonadism is a condition in which the function of the testes in males is reduced and can result in low levels of sex steroids produced like testosterone.
Edwards syndrome, also known as trisomy 18, is a genetic disorder caused by the presence of all, or part of a third copy of chromosome 18. Many parts of the body are affected. Babies are often born small and have heart defects. Other features include a small head, small jaw, clenched fists with overlapping fingers, and severe intellectual disability.
Most cases of Edwards syndrome occur due to problems during the formation of the reproductive cells or during early development. The rate of disease increases with the mother's age. Rarely cases may be inherited from a person's parents. Occasionally not all cells have the extra chromosome, known as mosaic trisomy, and symptoms in these cases may be less severe. Ultrasound can increase suspicion for the condition, which can be confirmed by amniocentesis.
Treatment is supportive. After having one child with the condition, the risk of having a second is typically around one percent. It is the second-most frequent condition due to a third chromosome at birth, after Down syndrome.
Edwards syndrome occurs in around one in 5,000 live births. Some studies suggest that more babies that survive to birth are female. Many of those affected die before birth. Survival beyond a year of life is around 5-25%. It is named after John Hilton Edwards, who first described the syndrome in 1960.
Isodicentric 15, also called idic(15), partial tetrasomy 15q, or inverted duplication 15 (inv dup 15), is a chromosome abnormality in which a child is born with extra genetic material from chromosome 15. People with idic(15) are typically born with 47 chromosomes in their body cells, instead of the normal 46. The extra chromosome is made up of a piece of chromosome 15 that has been duplicated end-to-end like a mirror image. It is the presence of this extra genetic material that is thought to account for the symptoms seen in some people with idic(15). Individuals with idic(15) have a total of four copies of this chromosome 15 region instead of the usual two copies (1 copy each on the maternal and paternal chromosomes).
The syndrome is also often referred to by the broader term "Chromosome 15q11.2-q13.1 Duplication Syndrome", shortened to Dup15q syndrome, a name that is supported and actively promoted by the US-based support organization Dup15q Alliance. Dup15q syndrome is a broader disease term, as it includes both idic(15) and interstitial 15q11.2-q13.1, another type of duplication that causes similar clinical traits.
The extra chromosome is occasionally found in the mosaic state, i.e. some of the cells carry the marker chromosome. However, mostly because of the marker's instability and tendency to be lost during cell division (mitosis), some cells are completely normal with 46 chromosomes. Occasionally, cells may have more than one idic(15), resulting in 48 or 49 chromosomes in all or some of their cells. A similar clinical picture albeit to a milder degree could be expected in individuals that have the extra chromosome 15 material as an interstitial duplication (when the extra piece of chromosome 15 is included "within" the long arm of one of the two copies of chromosome 15, rather than as a small extra 'marker' chromosome) - often abbreviated to int dup(15); the individual thus having 46 chromosomes.
As babies and children, XXY males may have weaker muscles and reduced strength. As they grow older, they tend to become taller than average. They may have less muscle control and coordination than other boys of their age.
During puberty, the physical traits of the syndrome become more evident; because these boys do not produce as much testosterone as other boys, they have a less muscular body, less facial and body hair, and broader hips. As teens, XXY males may develop breast tissue and also have weaker bones, and a lower energy level than other males.
By adulthood, XXY males look similar to males without the condition, although they are often taller. In adults, possible characteristics vary widely and include little to no sign of affectedness, a , youthful build and facial appearance, or a rounded body type with some degree of gynecomastia (increased breast tissue). Gynecomastia is present to some extent in about a third of affected individuals, a slightly higher percentage than in the XY population. About 10% of XXY males have gynecomastia noticeable enough that they may choose to have cosmetic surgery.
Affected males are often infertile, or may have reduced fertility. Advanced reproductive assistance is sometimes possible.
The term "hypogonadism" in XXY symptoms is often misinterpreted to mean "small testicles" when it means decreased testicular hormone/endocrine function. Because of this (primary) hypogonadism, individuals will often have a low serum testosterone level but high serum follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels. Despite this misunderstanding of the term, however, it is true that XXY men may also have microorchidism (i.e., small testicles).
The testicle size of affected males are usually less than 2 cm in length (and always shorter than 3.5 cm), 1 cm in width and 4 ml in volume.
XXY males are also more likely than other men to have certain health problems that typically affect females, such as autoimmune disorders, breast cancer, venous thromboembolic disease, and osteoporosis. In contrast to these potentially increased risks, it is currently thought that rare X-linked recessive conditions occur less frequently in XXY males than in normal XY males, since these conditions are transmitted by genes on the X chromosome, and people with two X chromosomes are typically only carriers rather than affected by these X-linked recessive conditions.
While it is possible to characterise XXY males based on physical characteristics, substantial variation in physical and developmental traits mean the only reliable method of positive or negative identification is karyotype testing.
Nondisjunction is the failure of homologous chromosomes or sister chromatids to separate properly during cell division. There are three forms of nondisjunction: failure of a pair of homologous chromosomes to separate in meiosis I, failure of sister chromatids to separate during meiosis II, and failure of sister chromatids to separate during mitosis. Nondisjunction results in daughter cells with abnormal chromosome numbers (aneuploidy).
Calvin Bridges and Thomas Hunt Morgan are credited with discovering nondisjunction in "Drosophila melanogaster" sex chromosomes in the spring of 1910, while working in the Zoological Laboratory of Columbia University.
BVVL is marked by a number of cranial nerve palsies, including those of the motor components involving the 7th and 9th-12th cranial nerves, spinal motor nerves, and upper motor neurons. Major features of BVVL include facial and neck weakness, fasciculation of the tongue, and neurological disorders from the cranial nerves. The neurological manifestations develop insidiously: they usually begin with sensorineural deafness, progress inexorably to paralysis, and often culminate in respiratory failure. Most mortality in patients has been from either respiratory infections or respiratory muscle paralysis. Pathological descriptions of BVVL include injury and depletion of 3rd-7th cranial nerves, loss of the spinal anterior horn cells, degeneration of Purkinje cells, as well as degeneration of the spinocerebellar and pyramidal tracts. The first symptoms in nearly all cases of BVVL is progressive vision loss and deafness, and the first initial symptoms are seen anywhere from one to three years.
Most cases of deafness are followed by a latent period that can extend anywhere from weeks to years, and this time is usually marked by cranial nerve degeneration. Neurological symptoms of BVVL include optic atrophy, cerebellar ataxia, retinitis pigmentosa, epilepsy and autonomic dysfunction. Non-neurological symptoms can include diabetes, auditory hallucinations, respiratory difficulties, color blindness, and hypertension.
Brown-Vialetto-Van-Laere syndrome (BVVL), sometimes known as Brown's Syndrome, is a rare degenerative disorder often initially characterized by progressive sensorineural deafness.
The syndrome most often affects children, adolescents, and young adults. As knowledge of BVVL grows some adult patients have now been diagnosed. There is no known cure, however with prompt treatment the prognosis may be positive with some patients stabilizing and even minor improvements noted in certain cases.
Ectrodactyly, split hand, cleft hand, derived from the Greek "ektroma" (abortion) and "daktylos" (finger) involves the deficiency or absence of one or more central digits of the hand or foot and is also known as split hand/split foot malformation (SHFM). The hands and feet of people with ectrodactyly are often described as "claw-like" and may include only the thumb and one finger (usually either the little finger, ring finger, or a syndactyly of the two) with similar abnormalities of the feet.
It is a rare form of a congenital disorder in which the development of the hand is disturbed. It is a type I failure of formation – longitudinal arrest. The central ray of the hand is affected and usually appears without proximal deficiencies of nerves, vessels, tendons, muscles and bones in contrast to the radial and ulnar deficiencies. The cleft hand appears as a V-shaped cleft situated in the centre of the hand. The digits at the borders of the cleft might be syndactilyzed, and one or more digits can be absent. In most types, the thumb, ring finger and little finger are the less affected parts of the hand. The incidence of cleft hand varies from 1 in 90,000 to 1 in 10,000 births depending on the used classification. Cleft hand can appear unilateral or bilateral, and can appear isolated or associated with a syndrome.
Split hand/foot malformation (SHFM) is characterized by underdeveloped or absent central digital rays, clefts of hands and feet, and variable syndactyly of the remaining digits. SHFM is a heterogeneous condition caused by abnormalities at one of multiple loci, including SHFM1 (SHFM1 at 7q21-q22), SHFM2 (Xq26), SHFM3 (FBXW4/DACTYLIN at 10q24), SHFM4 (TP63 at 3q27), and SHFM5 (DLX1 and DLX 2 at 2q31). SHFM3 is unique in that it is caused by submicroscopic tandem chromosome duplications of FBXW4/DACTYLIN. SHFM3 is considered 'isolated' ectrodactyly and does not show a mutation of the tp63 gene.
Ectrodactyly can be caused by various changes to 7q. When 7q is altered by a deletion or a translocation ectrodactyly can sometimes be associated with hearing loss. Ectrodactyly, or Split hand/split foot malformation (SHFM) type 1 is the only form of split hand/ malformation associated with sensorineural hearing loss.
Karyotyping involves performing an amniocentesis in order to study the cells of an unborn fetus during metophase 1. Light microscopy can be used to visually determine if aneuploidy is an issue.
Reye syndrome progresses through five stages:
- Stage I
- Rash on palms of hands and feet
- Persistent, heavy vomiting that is not relieved by not eating
- Generalized lethargy
- Confusion
- Nightmares
- No fever usually present
- Headaches
- Stage II
- Stupor
- Hyperventilation
- Fatty liver (found by biopsy)
- Hyperactive reflexes
- Stage III
- Continuation of Stage I and II symptoms
- Possible coma
- Possible cerebral edema
- Rarely, respiratory arrest
- Stage IV
- Deepening coma
- Dilated pupils with minimal response to light
- Minimal but still present liver dysfunction
- Stage V
- Very rapid onset following stage IV
- Deep coma
- Seizures
- Multiple organ failure
- Flaccidity
- Hyperammonemia (above 300 mg/dL of blood)
- Death
Reye syndrome is a rapidly progressive encephalopathy. Symptoms may include vomiting, personality changes, confusion, seizures, and loss of consciousness. Even though liver toxicity typically occurs, yellowish skin usually does not. Death occurs in 20–40% of those affected and about a third of those who survive are left with a significant degree of brain damage.
The cause of Reye syndrome is unknown. It usually begins shortly after recovery from a viral infection, such as influenza or chickenpox. About 90% of cases in children are associated with aspirin (salicylate) use. Inborn errors of metabolism are also a risk factor. Changes on blood tests may include a high blood ammonia level, low blood sugar level, and prolonged prothrombin time. Often the liver is enlarged.
Prevention is typically by avoiding the use of aspirin in children. When aspirin was withdrawn for use in children a decrease of more than 90% in rates of Reye syndrome was seen. Early diagnosis improves outcomes. Treatment is supportive. Mannitol may be used to help with the brain swelling.
The first detailed description of Reye syndrome was in 1963 by Douglas Reye. Children are most commonly affected. It affects less than one in a million children a year. The general recommendation to use aspirin in children was withdrawn because of Reye syndrome, with use of aspirin only recommended in Kawasaki disease.
People with Cowden syndrome develop characteristic lesions called hamartomas, which are small, noncancerous growths that are most commonly found on the skin and mucous membranes (such as the lining of the mouth, nose, and intestines), but can also occur other parts of the body, such as the thyroid and breast. The majority of affected individuals develop the characteristic skin lesions by 20 years of age.
Hamartomas are typically benign; however, people with Cowden syndrome are at increased risk of developing several types of cancer, including cancers of the breast, thyroid, uterus (endometrial), and kidney cancers. Two thirds of people have thyroid abnormalities, which usually consist of follicular adenomas (benign) or multinodular goiter of the thyroid. Up to 10 percent of people with Cowden Syndrome develop follicular thyroid cancer.
Skin abnormalities in people with Cowdens syndrome can include oral and skin papillomas and benign growths of the skin called trichilemmomas. Additional signs and symptoms of Cowden syndrome can include an enlarged head (macrocephaly), a rare noncancerous brain tumor called Lhermitte-Duclos disease, and glycogenic acanthosis of the esophagus. Up to 75% have benign breast conditions such as ductal hyperplasia, intraductal papillomatosis, adenosis, lobular atrophy, fibroadenomas, and fibrocystic changes.
Cowden syndrome (also known as Cowden's disease and sometimes as multiple hamartoma syndrome) is a rare autosomal dominant inherited disorder characterized by multiple non-cancerous tumor-like growths called hamartomas, which typically are found in the skin, mucous membranes (mouth, nasal membranes, GI tract), thyroid gland, and breast tissue. While the hamartomas are benign, people with Cowden syndrome are at increased risk of certain forms of cancer, including breast, thyroid, uterus (endometrial), and kidney cancers.
Cowden syndrome is associated with mutations in PTEN, a tumor suppressor gene, that cause the PTEN protein not to work properly leading to hyperactivity of the mTOR pathway. These mutations lead to characteristic features including macrocephaly, intestinal hamartomatous polyps, benign skin tumors (multiple trichilemmomas, papillomatous papules, and acral keratoses) and dysplastic gangliocytoma of the cerebellum (Lhermitte-Duclos disease). In addition, there is a predisposition to breast carcinoma, follicular carcinoma of the thyroid, and endometrial carcinoma.
Congenital trigger thumb, (or Pediatric trigger thumb), is a trigger thumb in neonates and young children. Triggering, clicking or snapping is observed by flexion or extension of the interphalangeal joint (IPJ). In the furthest stage, no extension is possible and there is a fixed flexion deformity of the thumb in the IPJ. Cause, natural history, prognosis and recommended treatment are controversial.