Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The blockage of cerebrospinal fluid (CSF) flow may also cause a syrinx to form, eventually leading to syringomyelia. Central cord symptoms such as hand weakness, dissociated sensory loss, and, in severe cases, paralysis may occur.
Syringomyelia is a chronic progressive degenerative disorder characterized by a fluid-filled cyst located in the spinal cord. Its symptoms include pain, weakness, numbness, and stiffness in the back, shoulders, arms or legs. Other symptoms include headaches, the inability to feel changes in the temperature, sweating, sexual dysfunction, and loss of bowel and bladder control. It is usually seen in the cervical region but can extend into the medulla oblongata and pons or it can reach downward into the thoracic or lumbar segments. Syringomyelia is often associated with Chiari malformation type I and is commonly seen between the C-4 and C-6 levels. The exact development of syringomyelia is unknown but many theories suggest that the herniated tonsils in Chiari malformation type I form a "plug" which does not allow an outlet of CSF from the brain to the spinal canal. Syringomyelia is present in 25% of patients with Chiari malformation.
This condition is acquired as a consequence of CNS infections, meningitis, brain tumors, head trauma, toxoplasmosis, intracranial hemorrhage (subarachnoid or intraparenchymal) and is usually painful.
The signs and symptoms of diastematomyelia may appear at any time of life, although the diagnosis is usually made in childhood. Cutaneous lesions (or stigmata), such as a hairy patch, dimple, Hemangioma, subcutaneous mass, Lipoma or Teratoma override the affected area of the spine is found in more than half of cases. Neurological symptoms are nonspecific, indistinguishable from other causes of cord tethering. The symptoms are caused by tissue attachments that limit the movement of the spinal cord within the spinal column. These attachments cause an abnormal stretching of the spinal cord.
The course of the disorder is progressive. In children, symptoms may include the "stigmata" mentioned above and/or foot and spinal deformities; weakness in the legs; low back pain; scoliosis; and incontinence. In adulthood, the signs and symptoms often include progressive sensory and motor problems and loss of bowel and bladder control. This delayed presentation of symptoms is related to the degree of strain placed on the spinal cord over time.
Tethered spinal cord syndrome appears to be the result of improper growth of the neural tube during fetal development, and is closely linked to spina bifida.
Tethering may also develop after spinal cord injury and scar tissue can block the flow of fluids around the spinal cord. Fluid pressure may cause cysts to form in the spinal cord, a condition called syringomyelia. This can lead to additional loss of movement, feeling or the onset of pain or autonomic symptoms.
Cervical diastematomyelia can become symptomatic as a result of acute trauma, and can cause major neurological deficits, like hemiparesis, to result from otherwise mild trauma.
The following definitions may help to understand some of the related entities:
- Diastematomyelia (di·a·stem·a·to·my·elia) is a congenital anomaly, often associated with spina bifida, in which the spinal cord is split into halves by a bony spicule or fibrous band, each half being surrounded by a dural sac.
- Myeloschisis (my·elos·chi·sis) is a developmental anomaly characterized by a cleft spinal cord, owing to failure of the neural plate to form a complete neural tube or to rupture of the neural tube after closure.
- Diplomyelia (diplo.my.elia) is a true duplication of spinal cord in which these are two dural sacs with two pairs of anterior and posterior nerve roots.
Congenital hydrocephalus is present in the infant prior to birth, meaning the fetus developed hydrocephalus in utero during fetal development. The most common cause of congenital hydrocephalus is aqueductal stenosis. Aqueductal stenosis occurs when the narrow passage between the third and fourth ventricles in the brain is blocked or too narrow to allow sufficient cerebral spinal fluid to drain. Fluid accumulates in the upper ventricles, causing hydrocephalus.
Other causes of congenital hydrocephalus include neural tube defects, arachnoid cysts, Dandy-Walker syndrome, and Arnold-Chiari malformation.
The cranial bones fuse by the end of the third year of life. For head enlargement to occur, hydrocephalus must occur before then. The causes are usually genetic but can also be acquired and usually occur within the first few months of life, which include 1) intraventricular matrix hemorrhages in premature infants, 2) infections, 3) type II Arnold-Chiari malformation, 4) aqueduct atresia and stenosis, and 5) Dandy-Walker malformation.
In newborns and toddlers with hydrocephalus, the head circumference is enlarged rapidly and soon surpasses the 97th percentile. Since the skull bones have not yet firmly joined together, bulging, firm anterior and posterior fontanelles may be present even when the patient is in an upright position.
The infant exhibits fretfulness, poor feeding, and frequent vomiting. As the hydrocephalus progresses, torpor sets in, and the infant shows lack of interest in their surroundings. Later on, the upper eyelids become retracted and the eyes are turned downwards ("sunset eyes") (due to hydrocephalic pressure on the mesencephalic tegmentum and paralysis of upward gaze). Movements become weak and the arms may become tremulous. Papilledema is absent but there may be a reduction of vision. The head becomes so enlarged that the child may eventually be bedridden.
About 80-90% of fetuses or newborn infants with spina bifida—often associated with meningocele or myelomeningocele—develop hydrocephalus.
Sinus pericranii typically present as soft palpable masses along midline skull, which may fluctuate in size depending on body positioning. Classically, these lesions are not associated with color change of the overlying skin, such as with other vascular lesions such as hemangioma.
The most obvious clinical sign of syringomyelia is pain. Dogs with CM alone do not seem to have signs, but some appear to have facial pain. Common symptoms in human patients include, severe headache and neck pain, dizziness, vertigo, disequilibrium, visual disturbances, ringing in the ears, difficulty swallowing, palpitations, sleep apnea, muscle weakness, impaired fine motor skills, chronic fatigue and painful tingling of the hands and feet, pruritus.
Hydranencephaly is a condition in which the cerebral hemispheres are missing and instead filled with sacs of cerebrospinal fluid.
Encephaloceles are characterized by protrusions of the brain through the skull that are sac-like and covered with membrane. They can be a groove down the middle of the upper part of the skull, between the forehead and nose, or the back of the skull. Encephaloceles are often obvious and diagnosed immediately. Sometimes small encephaloceles in the nasal and forehead are undetected.
Sinus pericranii (SP) is a rare disorder characterized by a congenital (or occasionally, acquired) epicranial venous malformation of the scalp. Sinus pericranii is an abnormal communication between the intracranial and extracranial venous drainage pathways. Treatment of this condition has mainly been recommended for aesthetic reasons and prevention of hemorrhage.
The key features of this syndrome are an enlargement of the fourth ventricle; complete absence of the cerebellar vermis, the posterior midline area of cerebellar cortex responsible for coordination of the axial musculature; and cyst formation near the internal base of the skull. An increase in the size of the fluid spaces surrounding the brain as well as an increase in pressure may also be present. The syndrome can appear dramatically or develop unnoticed.
Symptoms, which often occur in early infancy, include slower motor development and progressive enlargement of the skull. In older children, symptoms of increased intracranial pressure such as irritability, vomiting, and convulsions and signs of cerebellar dysfunction such as unsteadiness and lack of muscle coordination or jerky movements of the eyes may occur. Other symptoms include increased head circumference, bulging at the back of the skull, problems with the nerves that control the eyes, face and neck, and abnormal breathing patterns.
Dandy–Walker syndrome is frequently associated with disorders of other areas of the central nervous system including absence of the corpus callosum, the bundle of axons connecting the two cerebral hemispheres, and malformations of the heart, face, limbs, fingers and toes.
The Dandy–Walker complex is a genetically sporadic disorder that occurs one in every 30,000 live births. Prenatal diagnosis and prognosis of outcomes associated with Dandy–Walker can be difficult. Prenatal diagnosis is possible with ultrasound. Because the syndrome is associated with an increased risk for fetal karyotype abnormalities, amniocentesis can be offered after prenatal diagnosis. There is a relative contraindication of taking Warfarin during pregnancy, as it is associated with an increased risk of Dandy–Walker syndrome if taken during the first trimester.
Adult presentation in diastematomyelia is unusual. With modern imaging techniques, various types of spinal dysraphism are being diagnosed in adults with increasing frequency. The commonest location of the lesion is at first to third lumbar vertebrae. Lumbosacral adult diastematomyelia is even rarer. Bony malformations and dysplasias are generally recognized on plain x-rays. MRI scanning is often the first choice of screening and diagnosis. MRI generally give adequate analysis of the spinal cord deformities although it has some limitations in giving detailed bone anatomy. Combined myelographic and post-myelographic CT scan is the most effective diagnostic tool in demonstrating the detailed bone, intradural and extradural pathological anatomy of the affected and adjacent spinal canal levels and of the bony spur.
Prenatal ultrasound diagnosis of this anomaly is usually possible in the early to mid third-trimester. An extra posterior echogenic focus between the fetal spinal laminae is seen with splaying of the posterior elements, thus allowing for early surgical intervention and have a favorable prognosis. Prenate ultrasound could also detect whether the diastematomyelia is isolated, with the skin intact or association with any serious neural tube defects. Progressive neurological lesions may result from the "tethering cord syndrome" (fixation of the spinal cord) by the diastematomyelia phenomenon or any of the associated disorders such as myelodysplasia, dysraphia of the spinal cord.
The DWS malformation is the most severe presentation of the syndrome. The posterior fossa is enlarged and the tentorium is in high position. There is complete agenesis of the cerebellar vermis. There is also cystic dilation of the fourth ventricle, which fills the posterior fossa. This often involves hydrocephalus and complications due to associated genetic conditions, such as Spina Bifida.
Syringomyelia causes a wide variety of neuropathic symptoms due to damage of the spinal cord and the nerves inside. Patients may experience severe chronic pain, abnormal sensations and loss of sensation particularly in the hands. Some patients experience paralysis or paresis temporarily or permanently. A syrinx may also cause disruptions in the parasympathetic and sympathetic nervous systems, leading to abnormal body temperature or sweating, bowel control issues, or other problems. If the syrinx is higher up in the spinal cord or affecting the brainstem as in syringobulbia, vocal cord paralysis, ipsilateral tongue wasting, trigeminal nerve sensory loss, and other signs may occur. Rarely, bladder stones can occur in the onset of weakness in the lower extremities.
Classically, syringomyelia spares the dorsal column/medial lemniscus of the spinal cord, leaving pressure, vibration, touch and proprioception intact in the upper extremities. Neuropathic arthropathy, also known as a Charcot joint, can occur, particularly in the shoulders, in patients with syringomyelia. The loss of sensory fibers to the joint is theorized to lead to damage of the joint over time.
Vein of Galen aneurysmal malformations (VGAM) and Vein of Galen aneurysmal dilations (VGAD) are the most frequent arteriovenous malformations in infants and fetuses. VGAM consist of a tangled mass of dilated vessels supplied by an enlarged artery. The malformation increases greatly in size with age, although the mechanism of the increase is unknown. Dilation of the great cerebral vein of Galen is a secondary result of the force of arterial blood either directly from an artery via an arteriovenous fistula or by way of a tributary vein that receives the blood directly from an artery. There is usually a venous anomaly downstream from the draining vein that, together with the high blood flow into the great cerebral vein of Galen causes its dilation. The right sided cardiac chambers and pulmonary arteries also develop mild to severe dilation.
Five patterns of Galenic arteriovenous malformations have been described:
These malformations develop in utero by the persistence of fistulae between primitive pia arachnoidal arteries and pial veins that cross each other at right angles. Because the primitive Galenic system and the primitive choroidal system lie close together, an arteriovenous malformation involving the primitive choroidal system will inevitably involve the Galenic vein. Larger arteriovenous shunts correlate with greater hemodynamic effects and earlier symptom onset; small arteriovenous shunts correlate with greater local mass effect causing progressive neurological impairment.
All fast-flow malformations are malformations involving arteries. They constitute about 14% of all vascular malformations.
- Arterial malformation
- Arteriovenous fistula (AVF) : a lesion with a direct communication via fistulae between an artery and a vein.
- Arteriovenous malformation : a lesion with a direct connection between an artery and a vein, without an intervening capillary bed, but with an interposed nidus of dysplastic vascular channels in between.
In children, symptoms may include:
- Lesions, hairy patches, dimples, or fatty tumours on the lower back
- Foot and spinal deformities
- Weakness in the legs (loss of muscle strength and tone)
- Change in or abnormal gait including awkwardness while running or wearing the tips or side of one shoe
- Low back pain
- Scoliosis (abnormal curvature of the spine to the left or right)
- Urinary irregularities (incontinence or retention)
Tethered spinal cord syndrome may go undiagnosed until adulthood, when sensory, motor, bowel, and bladder control issues emerge. This delayed presentation of symptoms relates to the degree of strain on the spinal cord over time.
Tethering may also develop after spinal cord injury. Scar tissue can block the flow of fluids around the spinal cord. Fluid pressure may cause cysts to form in the spinal cord, a condition called syringomyelia. This can lead to additional loss of movement or feeling, or the onset of pain or autonomic nervous system symptoms.
In adults, onset of symptoms typically include:
- Severe pain (in the lower back and radiating into the legs, groin, and perineum)
- Bilateral muscle weakness and numbness
- Loss of feeling and movement in lower extremities
- Urinary irregularities (incontinence or retention)
- Bowel control issues
Neurological symptoms can include a mixed picture of upper and lower motor neuron findings, such as amyotrophy, hyperreflexia, and pathologic plantar response, occurring in the same limb. Profound sensory changes, such as loss of pain, temperature, and proprioceptive sensations, are common. Last, progressive symptoms of a neuropathic bladder are noted on over 70% of adult patients, versus only 20% to 30% of children. These symptoms include urinary frequency and urgency, feeling of incomplete voiding, poor voluntary control, and urge and stress incontinence. Chronic recurrent infections are common and occasionally lead to nephrolithiasis (kidney stones), renal failure, or renal transplantation. Female patients also give a history of ineffective labor and postpartum rectal prolapse, presumably due to an atonic pelvic floor.
Chiari-like malformation (CM) is the most common cause of foramen magnum obstruction and syringomyelia in dogs. Syringomyelia (SM) is a disease of the spinal cord typified by fluid filled cavities, or syrinxes, within the spinal cord substance. The disease is caused by the obstruction of cerebrospinal fluid (CSF), in the nervous system. A situation of high pressure in the spinal cord compared to low pressure outside, leads to fluid accumulation, which eventually forms cavities. CM is a condition characterized by the mismatch of size between the brain and the skull. The skull is too small causing part of the brain to descend out of the skull through the opening at its base, crowding the spinal cord. The cause of CM is not yet fully understood. CM is rare in most breeds but reportedly has become very widespread in the Cavalier King Charles Spaniel and the Griffon Bruxellois (Brussels Griffon). As many as 95% of Cavalier King Charles Spaniels may have CM. It is worldwide in scope and not limited to any country, breeding line, or kennel, and experts report that it is believed to be inherited in the Cavalier King Charles Spaniel. CM is so widespread in the Cavalier that it may be an inherent part of the CKCS's breed standard. This disease not only affects thousands of dogs, but a similar condition affects over three hundred thousand children yearly. Therefore, canines are an appropriate model for the treatment of the human condition.
Syringomyelia is a generic term referring to a disorder in which a cyst or cavity forms within the spinal cord. This cyst, called a syrinx, can expand and elongate over time, destroying the spinal cord. The damage may result in loss of pain, paralysis, weakness, and stiffness in the back, shoulders, and extremities. Syringomyelia may also cause a loss of the ability to feel extremes of hot or cold, especially in the hands. It may also lead to a cape-like bilateral loss of pain and temperature sensation along the upper chest and arms. Each patient experiences a different combination of symptoms. These symptoms typically vary depending on the extent and, often more critically, to the location of the syrinx within the spinal cord.
Syringomyelia has a prevalence estimated at 8.4 cases per 100,000 people, with symptoms usually beginning in young adulthood. Signs of the disorder tend to develop slowly, although sudden onset may occur with coughing, straining, or myelopathy.
Most people who develop SCSFLS feel the sudden onset of a severe and acute headache. It is a headache usually made worse by standing, typically becoming prominent throughout the day, with the pain becoming less severe when lying down. Orthostatic headaches can become chronic and disabling to the point of incapacitation. Some patients with SCSFLS will develop headaches that begin in the afternoon. This is known as "second-half-of-the-day headache". This may be an initial presentation of a spontaneous CSF leak or appear after treatment such as an epidural patch, and likely indicates a slow CSF leak.
Apart from headache, about 50% of patients experience neck pain or stiffness, nausea, and vomiting. Other symptoms include dizziness and vertigo, facial numbness or weakness, unusually blurry or double vision, neuralgia, fatigue, or a metallic taste in the mouth. Leaking CSF can sometimes be felt or observed as a discharge from the nose or ear.
Lack of CSF pressure and volume can allow the brain to sag and descend through the foramen magnum (large opening) of the occipital bone, at the base of the skull. The lower portion of the brain is believed to stretch or impact one or more cranial nerve complexes, thereby causing a variety of sensory symptoms. Nerves that can be affected and their related symptoms are detailed in the table at right.
a combination of various vascular malformations. They are 'complex' because they involve a combination of two different types of vessels.
- CVM: capillary venous malformation
- CLM: capillary lymphatic malformation
- LVM: lymphatic venous malformation
- CLVM: capillary lymphatic venous malformation. CLVM is associated with Klippel-Trenaunay syndrome
- AVM-LM: Arteriovenous malformation- lymphatic malformation
- CM-AVM: capillary malformation- arteriovenous malformation
In the eye, it is known as orbital cavernous hemangioma and is found in women more frequently than men, most commonly between the ages of 20-40. This neoplasm is usually located within the muscle cone, which is lateral to the optic nerve. It is not usually treated unless the patient is symptomatic. Visual impairment happens when the optic nerve is compressed or the extraocular muscles are surrounded.
There are various symptoms of colpocephaly and patients can experience effects ranging from mild to severe. Some patients do not show most of the symptoms related to colpocephaly, such as psychomotor abnormalilities and agenesis of the corpus callosum. In some cases, signs appear later on in life and a significant number of children suffer only from minor disabilities.
The following list includes common symptoms of colpocephaly.
- partial or complete agenesis of the corpus callosum
- intellectual disability
- motor abnormalities
- visual defects such as, crossing of the eyes, missing visual fields, and optic nerve hypoplasia
- spasticity
- seizures
- cerebral palsy
Intracranial abnormalities include:
- Microcephaly
- Agenesis of the corpus callosum
- Meningomyelocele
- Lissencephaly
- Periventricular leukomalacia (PVL)
- Enlargement of the cisterna magna
- Cerebellar hypoplasia
SCSFLS is classified into two main types, cranial leaks and spinal leaks. The vast majority of leaks are spinal. Cranial leaks occur in the head. In some of these cases, CSF can be seen dripping out of the nose, or ear. Spinal leaks occur when one or more holes form in the dura along the spinal cord. Both cranial and spinal spontaneous CSF leaks cause neurological symptoms as well as spontaneous intracranial hypotension, diminished volume and pressure of the cranium. While referred to as "intracranial hypotension", the intracranial pressure may be normal, with the underlying issue instead being low-volume CSF. For this reason SCSFLS is referred to as "CSF hypovolemia" as opposed to "CSF hypotension".