Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Computed tomography is the most sensitive and specific of the imaging techniques. The facial bones can be visualized as slices through the skeletal in either the axial, coronal or sagittal planes. Images can be reconstructed into a 3-dimensional view, to give a better sense of the displacement of various fragments. 3D reconstruction, however, can mask smaller fractures owing to volume averaging, scatter artifact and surrounding structures simply blocking the view of underlying areas.
Research has shown that panoramic radiography is similar to computed tomography in its diagnostic accuracy for mandible fractures and both are more accurate than plain film radiograph. The indications to use CT for mandible fracture vary by region, but it does not seem to add to diagnosis or treatment planning except for comminuted or avulsive type fractures, although, there is better clinician agreement on the location and absence of fractures with CT compared to panoramic radiography.
There are various classification systems of mandibular fractures in use.
Nasal fractures are usually identified visually and through physical examination. Medical imaging is generally not recommended. A priority is to distinguish simple fractures limited to the nasal bones (Type 1) from fractures that also involve other facial bones and/or the nasal septum (Types 2 and 3). In simple Type 1 fractures X-Rays supply surprisingly little information beyond clinical examination. However, diagnosis may be confirmed with X-rays or CT scans, and these are required if other facial injuries are suspected.
A fracture that runs horizontally across the septum is sometimes called a "Jarjavay fracture", and a vertical one, a "Chevallet fracture".
Although treatment of an uncomplicated fracture of nasal bones is not urgent—a referral for specific treatment in five to seven days usually suffices—an associated injury, nasal septal hematoma, occurs in about 5% of cases and does require urgent treatment and should be looked for during the assessment of nasal injuries.
A bone fracture may be diagnosed based on the history given and the physical examination performed. Radiographic imaging often is performed to confirm the diagnosis. Under certain circumstances, radiographic examination of the nearby joints is indicated in order to exclude dislocations and fracture-dislocations. In situations where projectional radiography alone is insufficient, Computed Tomography (CT) or Magnetic Resonance Imaging (MRI) may be indicated.
The indication to surgically stabilize a cervical fracture can be estimated from the "Subaxial Injury Classification" (SLIC). In this system, a score of 3 or less indicates that conservative management is appropriate, a score of 5 or more indicates that surgery is needed, and a score of 4 is equivocal. The score is the sum from 3 different categories: morphology, discs and ligaments, and neurology:
When a child experiences a fracture, he or she will have pain and will not be able to easily move the fractured area. A doctor or emergency care should be contacted immediately. In some cases even though the child will not have pain and will still be able to move, medical help must be sought out immediately. To decrease the pain, bleeding, and movement a physician will put a splint on the fractured area. Treatment for a fracture follows a simple rule: the bones have to be aligned correctly and prevented from moving out of place until the bones are healed. The specific treatment applied depends on how severe the fracture is, if it’s an open or closed fracture, and the specific bone involved in the fracture (a hip fracture is treated differently from a forearm fracture for example)
Different treatments for different fractures:
The general treatments for common fractures are as follows:
The basic method to check for a clavicle fracture is by an X-ray of the clavicle to determine the fracture type and extent of injury. In former times, X-rays were taken of both clavicle bones for comparison purposes. Due to the curved shape in a tilted plane X-rays are typically oriented with ~15° upwards facing tilt from the front. In more severe cases, a computerized tomography (CT) or magnetic resonance imaging (MRI) scan is taken.
However, the standard method of diagnosis through ultrasound imaging performed in the emergency room may be equally accurate in children.
To assess an olecranon fracture, a careful skin exam is performed to ensure there is no open fracture. Then a complete neurological exam of the upper limb should be documented. Frontal and lateral X-ray views of the elbow are typically done to investigate the possibility of an olecranon fracture. A true lateral x-ray is essential to determine the fracture pattern, degree of displacement, comminution, and the degree of articular involvement.
Severe pain will usually be present at the point of injury. Pressure on a nerve may also cause pain from the neck down the shoulders and/or arms. Bruising and swelling may be present at the back of the neck. A neurological exam will be performed to assess for spinal cord injury. X-rays will be ordered to determine the severity and location of the fracture. CT (computed tomography) scans may be ordered to assess for gross abnormalities not visible by regular X-ray. MRI (magnetic resonance imaging) tests may be ordered to provide high resolution images of soft tissue and determine whether there has been damage to the spinal cord, although such damage is usually obvious in the conscious patient because of the immediate functional consequences of numbness and paralysis in much of the body.
It is also common for imaging (either a plain film X-ray or CT scan) to be completed when assessing a cervical injury. This is the most common way to diagnose the location and severity of the fracture. To decrease the use C-spine scans yielding negative findings for fracture, thus unnecessarily exposing people to radiation and increase time in the hospital and cost of the visit, multiple clinical decision support rules have been developed to help clinicians weigh the option to scan a patient with a neck injury. Among these are the Canadian C-spine rule and the NEXUS criteria for C-Spine imaging, which both help make these decisions from easily obtained information. Both rules are widely used in emergency departments and by paramedics.
Bone stability after a fracture occurs between 3 and 4 weeks. Some experts suggest not wearing glasses or blowing the nose during this time as it can affect the bone alignment. Full bone fusion occurs between 4 and 8 weeks. General activity is fine after 1–2 weeks, but contact sports are not advisable for at least 2–3 months, depending on the extent of injury. It is recommended that when participating in sports a face guard should be worn for at least 6 weeks post-injury.
X-ray of the affected wrist is required if a fracture is suspected. Anteroposterior (AP), lateral, and oblique views can be used together to describe the fracture. X-ray of the uninjured wrist should also be taken to determine if there are any normal anatomic variations. Investigation of a potential distal radial fracture includes assessment of the angle of the joint surface on lateral X-ray (volar/dorsal tilt), the loss of length of the radius from the collapse of the fracture (radial length), and congruency of the distal radioulnar joint (DRUJ). Displacement of the articular surface is the most important factor affecting prognosis and treatment. CT scan is often performed to further investigate the articular anatomy of the fracture, especially if surgery is considered. MRI can be considered to evaluate for soft tissue injuries, including damage to the TFCC and the interosseous ligaments.
Typically, radiographs are taken of the hip from the front (AP view), and side (lateral view). Frog leg views are to be avoided, as they may cause severe pain and further displace the fracture. In situations where a hip fracture is suspected but not obvious on x-ray, an MRI is the next test of choice. If an MRI is not available or the patient can not be placed into the scanner a CT may be used as a substitute. MRI sensitivity for radiographically occult fracture is greater than CT. Bone scan is another useful alternative however substantial drawbacks include decreased sensitivity, early false negative results, and decreased conspicuity of findings due to age related metabolic changes in the elderly.
As the patients most often require an operation, full pre-operative general investigation is required. This would normally include blood tests, ECG and chest x-ray.
Diagnosis may be evident clinically when the distal radius is deformed but should be confirmed by X-ray.
The differential diagnosis includes scaphoid fractures and wrist dislocations, which can also co-exist with a distal radius fracture. Occasionally, fractures may not be seen on X-rays immediately after the injury. Delayed X-rays, X-ray computed tomography (CT scan), or Magnetic resonance imaging (MRI) will confirm the diagnosis.
Children in general are at greater risk because of their high activity levels. Children that have risk-prone behaviors are at even greater risk.
A compound elevated skull fracture is a rare type of skull fracture where the fractured bone is elevated above the intact outer table of the skull. This type of skull fracture is always compound in nature. It can be caused during an assault with a weapon where the initial blow penetrates the skull and the underlying meninges and, on withdrawal, the weapon lifts the fractured portion of the skull outward. It can also be caused the skull rotating while being struck in a case of blunt force trauma, the skull rotating while striking an inanimate object as in a fall, or it may occur during transfer of a patient after an initial compound head injury.
X-rays of the affected hip usually make the diagnosis obvious; AP (anteroposterior) and lateral views should be obtained.
Trochanteric fractures are subdivided into either intertrochanteric (between the greater and lesser trochanter) or pertrochanteric (through the trochanters) by the Müller AO Classification of fractures. Practically, the difference between these types is minor. The terms are often used synonymously. An "isolated trochanteric fracture" involves one of the trochanters without going through the anatomical axis of the femur, and may occur in young individuals due to forceful muscle contraction. Yet, an "isolated trochanteric fracture" may not be regarded as a true hip fracture because it is not cross-sectional.
X-ray is seldom helpful, but a CT scan and an MRI study may help in diagnosis.
Bone scans are positive early on. Dual energy X-ray absorptiometry is also helpful to rule out comorbid osteoporosis.
A fracture in conjunction with an overlying laceration that tears the epidermis and the meninges—or runs through the paranasal sinuses and the middle ear structures, putting the outside environment in contact with the cranial cavity—is a compound fracture.
Compound fractures may either be clean or contaminated. Intracranial air (pneumocephalus) may occur in compound skull fractures.
The most serious complication of compound skull fractures is infection. Increased risk factors for infection include visible contamination, meningeal tear, loose bone fragments and presenting for treatment more than eight hours after initial injury.
The diagnosis of nonunion is generally done when there is no progress between to occasions of medical imaging such as X-ray. This is generally the case after 6-8 months.
Definitive diagnosis of humerus fractures is typically made through radiographic imaging. For proximal fractures, X-rays can be taken from a scapular anteroposterior (AP) view, which takes an image of the front of the shoulder region from an angle, a scapular Y view, which takes an image of the back of the shoulder region from an angle, and an axillar lateral view, which has the patient lie on his or her back, lift the bottom half of the arm up to the side, and have an image taken of the axilla region underneath the shoulder. Fractures of the humerus shaft are usually correctly identified with radiographic images taken from the AP and lateral viewpoints. Damage to the radial nerve from a shaft fracture can be identified by an inability to bend the hand backwards or by decreased sensation in the back of the hand. Images of the distal region are often of poor quality due to the patient being unable to extend the elbow because of pain. If a severe distal fracture is supected, then a computed tomography (CT) scan can provide greater detail of the fracture. Nondisplaced distal fractures may not be directly visible; they may only be visible due to fat being displaced because of internal bleeding in the elbow.
Several precautions may decrease the risk of getting a pelvic fracture. One study that examined the effectiveness of vitamin D supplementation found that oral vitamin D supplements reduced the risk of hip and nonvertebral fractures in older people. Certain types of equipment may help prevent pelvic fractures for the groups which are most at risk.
Radiography, imaging of tissues using X-rays, is used to rule out facial fractures. Angiography (X-rays taken of the inside of blood vessels) can be used to locate the source of bleeding. However the complex bones and tissues of the face can make it difficult to interpret plain radiographs; CT scanning is better for detecting fractures and examining soft tissues, and is often needed to determine whether surgery is necessary, but it is more expensive and difficult to obtain. CT scanning is usually considered to be more definitive and better at detecting facial injuries than X-ray. CT scanning is especially likely to be used in people with multiple injuries who need CT scans to assess for other injuries anyway.
Segond and reverse Segond fractures are characterized by a small avulsion, or "chip", fragment of characteristic size that is best seen on plain radiography in the anterior-posterior plane. The chip of bone may be very difficult to see on the plain x-ray exam, and may be better seen on computed tomography. MRI may be useful for visualization of the associated bone marrow edema of the underlying tibial plateau on fat- saturated T2W and STIR images, as well as the associated findings of ligamentous and/or meniscal injury.
Pelvic fractures can be dangerous to one’s physical health. As the human body ages, the bones become more weak and brittle and are therefore more susceptible to fractures. Certain precautions are crucial in order to lower the risk of getting pelvic fractures. The most damaging is one from a car accident, cycling accident, or falling from a high building which can result in a high energy injury. This can be very dangerous because the pelvis supports many internal organs and can damage these organs. Falling is one of the most common causes of a pelvic fracture. Therefore, proper precautions should be taken to prevent this from happening.
A Cochrane review of low-intensity pulsed ultrasound to speed healing in newly broken bones found insufficient evidence to justify routine use. Other reviews have found tentative evidence of benefit. It may be an alternative to surgery for established nonunions.
Vitamin D supplements combined with additional calcium marginally reduces the risk of hip fractures and other types of fracture in older adults; however, vitamin D supplementation alone did not reduce the risk of fractures.