Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Due to the wide range of genetic disorders that are presently known, diagnosis of a genetic disorder is widely varied and dependent of the disorder. Most genetic disorders are diagnosed at birth or during early childhood, however some, such as Huntington's disease, can escape detection until the patient is well into adulthood.
The basic aspects of a genetic disorder rests on the inheritance of genetic material. With an in depth family history, it is possible to anticipate possible disorders in children which direct medical professionals to specific tests depending on the disorder and allow parents the chance to prepare for potential lifestyle changes, anticipate the possibility of stillbirth, or contemplate termination. Prenatal diagnosis can detect the presence of characteristic abnormalities in fetal development through ultrasound, or detect the presence of characteristic substances via invasive procedures which involve inserting probes or needles into the uterus such as in amniocentesis.
Not all genetic disorders directly result in death, however there are no known cures for genetic disorders. Many genetic disorders affect stages of development such as Down syndrome. While others result in purely physical symptoms such as muscular dystrophy. Other disorders, such as Huntington's disease show no signs until adulthood. During the active time of a genetic disorder, patients mostly rely on maintaining or slowing the degradation of quality of life and maintain patient autonomy. This includes physical therapy, pain management, and may include a selection of alternative medicine programs.
The degeneration of white matter, which shows the degeneration of myelin, can be seen in a basic MRI and used to diagnose leukodystrophies of all types. T-1 and T-2 weighted FLAIR images are the most useful. FLAIR stands for fluid-attenuated inversion recovery. Electrophysiological and other kinds of laboratory testing can also be done. In particular, nerve conduction velocity is looked at to distinguish between leukodystrophy and other demyelinating diseases, as well as to distinguish between individual leukodystrophies. For example, individuals with X-ALD have normal conduction velocities, while those with Krabbe disease or metachromatic leukodystrophy have abnormalities in their conduction velocities. Next generation multigene sequencing panels for undifferentiated leukodystrophy can now be offered for rapid molecular diagnosis after appropriate genetic counselling.
X-linked recessive inheritance is a mode of inheritance in which a mutation in a gene on the X chromosome causes the phenotype to be expressed in males (who are necessarily hemizygous for the gene mutation because they have one X and one Y chromosome) and in females who are homozygous for the gene mutation, see zygosity.
X-linked inheritance means that the gene causing the trait or the disorder is located on the X chromosome. Females have two X chromosomes, while males have one X and one Y chromosome. Carrier females who have only one copy of the mutation do not usually express the phenotype, although differences in X chromosome inactivation can lead to varying degrees of clinical expression in carrier females since some cells will express one X allele and some will express the other. The current estimate of sequenced X-linked genes is 499 and the total including vaguely defined traits is 983.
Some scholars have suggested discontinuing the terms dominant and recessive when referring to X-linked inheritance due to the multiple mechanisms that can result in the expression of X-linked traits in females, which include cell autonomous expression, skewed X-inactivation, clonal expansion, and somatic mosaicism.
In humans, generally men are affected and women are carriers for two reasons. The first is the simple statistical fact that if the X-chromosomes is a population that carry a particular X-linked mutation at a frequency of 'f' (for example, 1%) then that will be the frequency that men are likely to express the mutation (since they have only one X), while women will express it at a frequency of f (for example 1% * 1% = 0.01%) since they have two X's and hence two chances to get the normal allele. Thus, X-linked mutations tend to be rare in women. The second reason for female rarity is that women who "express" the mutation must have two X chromosomes that carry the trait and they necessarily got one from their father, who would have also expressed the trait because he only had one X chromosome in the first place. If the trait lowers the probability of fathering a child or induces the father to only have children with women who aren't carriers (so as not to create daughters who are carriers rather than expressers and then only if no genetic screening is used) then women become even "less" likely to express the trait.
X-ray and neuroimaging studies may be helpful in confirming a diagnosis of Coffin–Lowry syndrome. Decreased ribosomal S6 kinase activity in cultured fibroblast or transformed lymphoblast cells from a male indicates Coffin–Lowry syndrome. Studies of enzyme activity can not be used to diagnose an affected female.
Molecular genetic testing on a blood specimen or cells from a cheek swab is available to identify mutations in the RSK2 gene. This testing can be used to confirm but not rule out the diagnosis of Coffin–Lowry syndrome because not all affected individuals have a detectable mutation.
The diagnosis of IP is established by clinical findings and occasionally by corroborative skin biopsy. Molecular genetic testing of the NEMO IKBKG gene (chromosomal locus Xq28) reveals disease-causing mutations in about 80% of probands. Such testing is available clinically.
In addition, females with IP have skewed X-chromosome inactivation; testing for this can be used to support the diagnosis.
Many people in the past were misdiagnosed with a second type of IP, formerly known as IP1. This has now been given its own name - 'Hypomelanosis of Ito' (incontinentia pigmenti achromians). This has a slightly different presentation: swirls or streaks of hypopigmentation and depigmentation. It is "not" inherited and does not involve skin stages 1 or 2. Some 33–50% of patients have multisystem involvement — eye, skeletal, and neurological abnormalities. Its chromosomal locus is at Xp11, rather than Xq28.
Currently, no research has shown a higher prevalence of most leukodsytrophy types in any one place around the world. There is, however, a higher prevalence of the Canavan disease in the Jewish population for unknown reasons. 1 in 40 individuals of Ashkenazi Jewish descent are carriers of Canavan disease. This estimates to roughly 2.5%. Additionally, due to an autosomal recessive inheritance patterns, there is no significant difference found between affected males and affected females for most types of leukodystrophy including, but not limited to, metachromatic leukodystrophy, Krabbe disease, Canavan disease, and Alexander disease. The one exception to this is any type of leukodystrophy carried on a sex chromosome, such as X-linked adrenoleukodystrophy, which is carried on the X-chromosome. Because of the inheritance pattern of X-linked diseases, males are more often affected by this type of leukodystrophy, although female carriers are often symptomatic, though not as severely so as males. To date, there have been no found cases of a leukodystrophy carried on the Y chromosome.
Electrodiagnostic testing (also called electrophysiologic) includes nerve conduction studies which involves stimulating a peripheral motor or sensory nerve and recording the response, and needle electromyography, where a thin needle or pin-like electrode is inserted into the muscle tissue to look for abnormal electrical activity.
Electrodiagnostic testing can help distinguish myopathies from neuropathies, which can help determine the course of further work-up. Most of the electrodiagnostic abnormalities seen in myopathies are also seen in neuropathies (nerve disorders). Electrodiagnostic abnormalities common to myopathies and neuropathies include; abnormal spontaneous activity (e.g., fibrillations, positive sharp waves, etc.) on needle EMG and, small amplitudes of the motor responses compound muscle action potential, or CMAP during nerve conduction studies. Many neuropathies, however, cause abnormalities of sensory nerve studies, whereas myopathies involve only the muscle, with normal sensory nerves. The most important factor distinguishing a myopathy from a neuropathy on needle EMG is the careful analysis of the motor unit action potential (MUAP) size, shape, and recruitment pattern.
There is substantial overlap between the electrodiagnostic findings the various types of myopathy. Thus, electrodiagnostic testing can help distinguish neuropathy from myopathy, but is not effective at distinguishing which specific myopathy is present, here muscle biopsy and perhaps subsequent genetic testing are required.
X-linked myotubular myopathy (MTM) is a form of centronuclear myopathy (CNM) associated with myotubularin 1.
Genetically inherited traits and conditions are often referred to based upon whether they are located on the "sex chromosomes" (the X or Y chromosomes) versus whether they are located on "autosomal" chromosomes (chromosomes other than the X or Y). Thus, genetically inherited conditions are categorized as being sex-linked (e.g., X-linked) or autosomal. Females have two X-chromosomes, while males only have a single X chromosome, and a genetic abnormality located on the X chromosome is much more likely to cause clinical disease in a male (who lacks the possibility of having the normal gene present on any other chromosome) than in a female (who is able to compensate for the one abnormal X chromosome).
The X-linked form of MTM is the most commonly diagnosed type. Almost all cases of X-linked MTM occurs in males. Females can be "carriers" for an X-linked genetic abnormality, but usually they will not be clinically affected themselves. Two exceptions for a female with a X-linked recessive abnormality to have clinical symptoms: one is a manifesting carrier and the other is X-inactivation. A manifesting carrier usually has no noticeable problems at birth; symptoms show up later in life. In X-inactivation, the female (who would otherwise be a carrier, without any symptoms), actually presents with full-blown X-linked MTM. Thus, she congenitally presents (is born with) MTM.
Thus, although" MTM1" mutations most commonly cause problems in boys, these mutations can also cause clinical myopathy in girls, for the reasons noted above. Girls with myopathy and a muscle biopsy showing a centronuclear pattern should be tested for "MTM1" mutations.
Many clinicians and researchers use the abbreviations XL-MTM, XLMTM or X-MTM to emphasize that the genetic abnormality for myotubular myopathy (MTM) is X-linked (XL), having been identified as occurring on the X chromosome. The specific gene on the X chromosome is referred to as MTM-1. In theory, some cases of CNM may be caused by an abnormality on the X chromosome, but located at a different site from the gene "MTM1", but currently "MTM1" is the only X-linked genetic mutation site identified for myotubular or centronuclear myopathy. Clinical suspicion for X-linked inheritance would be a disease affecting multiple boys (but no girls) and a pedigree chart showing inheritance only through the maternal (mother’s) side of each generation.
Hypoparathyroidism can be diagnosed using blood tests, the Chvostek sign, and the Trousseau sign. If comorbid conditions like congenital malformations, impaired growth, and intellectual disability are present, it may be a genetic form of hypoparathyroidism; the affected gene can be determined using a DNA test.
On examination of muscle biopsy material, the nuclear material is located predominantly in the center of the muscle cells, and is described as having any "myotubular" or "centronuclear" appearance. In terms of describing the muscle biopsy itself, "myotubular" or "centronuclear” are almost synonymous, and both terms point to the similar cellular-appearance among MTM and CNM. Thus, pathologists and treating physicians use those terms almost interchangeably, although researchers and clinicians are increasingly distinguishing between those phrases.
In general, a clinical myopathy and a muscle biopsy showing a centronuclear (nucleus in the center of the muscle cell) appearance would indicate a centronuclear myopathy (CNM). The most commonly diagnosed CNM is myotubular myopathy (MTM). However, muscle biopsy analysis alone cannot reliably distinguish myotubular myopathy from other forms of centronuclear myopathies, and thus genetic testing is required.
Diagnostic workup is often coordinated by a treating neurologist. In the United States, care is often coordinated through clinics affiliated with the Muscular Dystrophy Association.
The diagnosis can usually be made on a combination of clinical, family history and biopsy criteria.
The diagnosis of Emery–Dreifuss muscular dystrophy can be established via single-gene testing or genomic testing, and clinically diagnosed via the following exams/methods:
Begin clinical laboratory evaluation of rickets with assessment of serum calcium, phosphate, and alkaline phosphatase levels. In hypophosphatemic rickets, calcium levels may be within or slightly below the reference range; alkaline phosphatase levels will be significantly above the reference range.
Carefully evaluate serum phosphate levels in the first year of life, because the concentration reference range for infants (5.0-7.5 mg/dL) is high compared with that for adults (2.7-4.5 mg/dL).
Serum parathyroid hormone levels are within the reference range or slightly elevated, while calcitriol levels are low or within the lower reference range. Most importantly, urinary loss of phosphate is above the reference range.
The renal tubular reabsorption of phosphate (TRP) in X-linked hypophosphatemia is 60%; normal TRP exceeds 90% at the same reduced plasma phosphate concentration. The TRP is calculated with the following formula:
1 - [Phosphate Clearance (CPi) / Creatinine Clearance (C)] X 100
To be helpful, kidney biopsies need to be taken before the disease is too advanced. Changes on conventional (light) microscopy are not characteristic, and the possibility of other diagnoses, particularly focal segmental glomerulosclerosis (FSGS), may be raised. Electron microscopy shows a characteristic sequence of changes from thinning of the glomerular basement membrane (GBM), developing into areas of thinning and thickening, and finally into a complex appearance with apparent splitting, often described as a 'basketweave' appearance. Early or very localised changes on this spectrum are not diagnostic, but the later changes are considered diagnostic.
Immunohistochemistry or immunofluorescence studies to identify the COL3-4-5 proteins in GBM can be helpful. However, these studies may be normal in some patients with Alport syndrome, especially milder variants.
Skin contains type IV collagen in a '556' network. Skin biopsies have been used to show absence of the "COL4A5" gene product, but these techniques are not straightforward, only apply to patients with severe "COL4A5" mutations, and are not widely available. Genetic testing is now a better alternative if kidney biopsy is not possible.
Chondrodysplasia punctata is a clinically and genetically diverse group of rare diseases, first described by Erich Conradi (1882–1968), that share the features of stippled epiphyses and skeletal changes.
Types include:
- Rhizomelic chondrodysplasia punctata , ,
- X-linked recessive chondrodysplasia punctata
- Conradi-Hünermann syndrome
- Autosomal dominant chondrodysplasia punctata
The assessment for Smith-Finemen-Myers syndrome like any other mental retardation includes a detailed family history and physical exam that tests the mentality of the patient. The patient also gets a brain and skeletal imaging though CT scans or x-rays. They also does a chromosome study and certain other genetic biochemical tests to help figure out any other causes for the mental retardation.
The diagnosis of SFMS is based on visible and measurable symptoms. Until 2000, SFMS was not known to be associated with any particular gene. As of 2001, scientists do not yet know if other genes are involved in this rare disease. Generic analysis of the ATRX gene may prove to be helpful in diagnosis of SFMS.
Diagnosis should be based on the clinical and radiographic findings and a genetic analysis can be assessed.
Most cases are caused by mutations in the EDA gene, which are inherited in an X-linked recessive pattern, called x-linked hypohidrotic ectodermal dysplasia (XLHED). A condition is considered X-linked if the mutated gene that causes the disorder is located on the X chromosome, one of the two sex chromosomes. In males (who have only one X chromosome), one altered copy of the gene in each cell is sufficient to cause the condition. In females (who have two X chromosomes), a mutation must be present in both copies of the gene to cause the disorder. Males are affected by X-linked recessive disorders much more frequently than females. A striking characteristic of X-linked inheritance is that fathers cannot pass X-linked traits to their sons.
In X-linked recessive inheritance, a female with one altered copy of the gene in each cell is called a carrier. Since females operate on only one of their two X chromosomes (X inactivation) a female carrier may or may not manifest symptoms of the disease. If a female carrier is operating on her normal X she will not show symptoms. If a female is operating on her carrier X she will show symptoms.In about 70 percent of cases, carriers of hypohidrotic ectodermal dysplasia experience some features of the condition. These signs and symptoms are usually mild and include a few missing or abnormal teeth, sparse hair, and some problems with sweat gland function. Some carriers, however, have more severe features of this disorder.
Other than managing symptoms, there is currently no treatment for XLHED. However, in December 2012 Edimer Pharmaceuticals a biotechnology company based in Cambridge, MA USA, initiated a Phase I, open-label, safety and pharmacokinetic clinical study of EDI200, a drug aimed at the treatment of XLHED. During development in mice and dogs EDI200 has been shown to substitute for the altered or missing protein resulting from the EDA mutation, which causes XLHED. The initiation of a clinical study of EDI200 in neonates started in October 2013 with the first neonate tested.
The diagnosis of muscular dystrophy is based on the results of muscle biopsy, increased creatine phosphokinase (CpK3), electromyography, and genetic testing. A physical examination and the patient's medical history will help the doctor determine the type of muscular dystrophy. Specific muscle groups are affected by different types of muscular dystrophy.
Other tests that can be done are chest X-ray, echocardiogram, CT scan, and magnetic resonance image scan, which via a magnetic field can produce images whose detail helps diagnose muscular dystrophy.
Because the variability of this disease is so great and the way that it reveals itself could be multi-faceted; once diagnosed, a multidisciplinary team is recommended to treat the disease and should include a craniofacial surgeon, ophthalmologist, pediatrician, pediatric urologist, cardiologist, pulmonologist, speech pathologist, and a medical geneticist. Several important steps must be followed, as well.
- Past medical history
- Physical examination with special attention to size and measurements of facial features, palate, heart, genitourinary system and lower respiratory system
- Eye evaluation
- Hypospadias assessment by urologist
- Laryngoscopy and chest x-ray for difficulties with breathing/swallowing
- Cleft lip/palate assessment by craniofacial surgeon
- Assessment of standard age developmental and intellectual abilities
- Anal position assessment
- Echocardiogram
- Cranial imaging
Many surgical repairs may be needed, as assessed by professionals. Furthermore, special education therapies and psychoemotional therapies may be required, as well. In some cases, antireflux drugs can be prescribed until risk of breathing and swallowing disorders are removed. Genetic counseling is highly advised to help explain who else in the family may be at risk for the disease and to help guide family planning decisions in the future.
Because of its wide variability in which defects will occur, there is no known mortality rate specifically for the disease. However, the leading cause of death for people with Opitz G/BBB syndrome is due to infant death caused by aspiration due to esophageal, pharyngeal or laryngeal defects.
Fortunately, to date there are no factors that can increase the expression of symptoms of this disease. All abnormalities and symptoms are present at birth.
Opitz G/BBB Syndrome is a rare genetic condition caused by one of two major types of mutations: MID1 mutation on the short (p) arm of the X chromosome or a mutation of the 22q11.2 gene on the 22nd chromosome. Since it is a genetic disease, it is an inherited condition. However, there is an extremely wide variability in how the disease presents itself.
In terms of prevention, several researchers strongly suggest prenatal testing for at-risk pregnancies if a MID1 mutation has been identified in a family member. Doctors can perform a fetal sex test through chromosome analysis and then screen the DNA for any mutations causing the disease. Knowing that a child may be born with Opitz G/BBB syndrome could help physicians prepare for the child’s needs and the family prepare emotionally. Furthermore, genetic counseling for young adults that are affected, are carriers or are at risk of carrying is strongly suggested, as well (Meroni, Opitz G/BBB syndrome, 2012). Current research suggests that the cause is genetic and no known environmental risk factors have been documented. The only education for prevention suggested is genetic testing for at-risk young adults when a mutation is found or suspected in a family member.
An absolute neutrophil count (ANC) chronically less than 500/mm3, usually less than 200/mm3, is the main sign of Kostmann's. Other elements include the severity of neutropenia, the chronology (from birth; not emerging later), and other normal findings (hemoglobin, platelets, general body health). Isolated neutropenia in infants can occur in viral infections, autoimmune neutropenia of infancy, bone marrow suppression from a drug or toxin, hypersplenism, and passive placental transfer of maternal IgG.
A bone marrow test can assist in diagnosis. The bone marrow usually shows early granulocyte precursors, but myelopoietic development stops ("arrests") at the promyelocyte and/or myelocyte stage, so that few maturing forms are seen. Neutrophil survival is normal.
Needs mention of (rarer) myelokathexis types. e.g. G6PC3 variant and
The diagnosis of immunodysregulation polyendocrinopathy enteropathy X-linked syndrome is consistent with the following criteria:
- Clinical examination
- Family history
- Laboratory findings
- Genetic testing