Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Medical imaging plays a central role in the diagnosis of brain tumors. Early imaging methods – invasive and sometimes dangerous – such as pneumoencephalography and cerebral angiography have been abandoned in favor of non-invasive, high-resolution techniques, especially magnetic resonance imaging (MRI) and computed tomography (CT) scans. Neoplasms will often show as differently colored masses (also referred to as processes) in CT or MRI results.
- Benign brain tumors often show up as hypodense (darker than brain tissue) mass lesions on CT scans. On MRI, they appear either hypodense or isointense (same intensity as brain tissue) on T1-weighted scans, or hyperintense (brighter than brain tissue) on T2-weighted MRI, although the appearance is variable.
- Contrast agent uptake, sometimes in characteristic patterns, can be demonstrated on either CT or MRI scans in most malignant primary and metastatic brain tumors.
- Pressure areas where the brain tissue has been compressed by a tumor also appear hyperintense on T2-weighted scans and might indicate the presence a diffuse neoplasm due to an unclear outline. Swelling around the tumor known as "peritumoral edema" can also show a similar result.
This is because these tumors disrupt the normal functioning of the BBB and lead to an increase in its permeability. However, it is not possible to diagnose high- versus low-grade gliomas based on enhancement pattern alone.
The definitive diagnosis of brain tumor can only be confirmed by histological examination of tumor tissue samples obtained either by means of brain biopsy or open surgery. The histological examination is essential for determining the appropriate treatment and the correct prognosis. This examination, performed by a pathologist, typically has three stages: interoperative examination of fresh tissue, preliminary microscopic examination of prepared tissues, and follow-up examination of prepared tissues after immunohistochemical staining or genetic analysis.
Diagnosis is made by the doctor on the basis of a medical history, physical examination, and special investigations which may include a chest x-ray, CT or MRI scans, and tissue biopsy. The examination of the larynx requires some expertise, which may require specialist referral.
The physical exam includes a systematic examination of the whole patient to assess general health and to look for signs of associated conditions and metastatic disease. The neck and supraclavicular fossa are palpated to feel for cervical adenopathy, other masses, and laryngeal crepitus. The oral cavity and oropharynx are examined under direct vision. The larynx may be examined by indirect laryngoscopy using a small angled mirror with a long handle (akin to a dentist's mirror) and a strong light. Indirect laryngoscopy can be highly effective, but requires skill and practice for consistent results. For this reason, many specialist clinics now use fibre-optic nasal endoscopy where a thin and flexible endoscope, inserted through the nostril, is used to clearly visualise the entire pharynx and larynx. Nasal endoscopy is a quick and easy procedure performed in clinic. Local anaesthetic spray may be used.
If there is a suspicion of cancer, biopsy is performed, usually under general anaesthetic. This provides histological proof of cancer type and grade. If the lesion appears to be small and well localised, the surgeon may undertake excision biopsy, where an attempt is made to completely remove the tumour at the time of first biopsy. In this situation, the pathologist will not only be able to confirm the diagnosis, but can also comment on the completeness of excision, i.e., whether the tumour has been completely removed. A full endoscopic examination of the larynx, trachea, and esophagus is often performed at the time of biopsy.
For small glottic tumours further imaging may be unnecessary. In most cases, tumour staging is completed by scanning the head and neck region to assess the local extent of the tumour and any pathologically enlarged cervical lymph nodes.
The final management plan will depend on the site, stage (tumour size, nodal spread, distant metastasis), and histological type. The overall health and wishes of the patient must also be taken into account. A prognostic multigene classifier has been shown to be potentially useful for the distinction of laryngeal cancer of low or high risk of recurrence and might influence the treatment choice in future.
There are several ways to diagnose Hypopharyngeal Cancer.
- Physical Examination:
The doctor checks for swollen lymph nodes and may look down the patient’s throat with a long handled mirror.
- Endoscopy, Esophagoscopy, or Bronchoscopy:
Inserted into the nose or mouth of the patient, this a thin, lighted tube that allows the doctor to see farther down the throat, into the esophagus or into the trachea.
- Biopsy:
This is a small tissue sample that can be acquired during an endosopy, esophagoscopy, or bronchoscopy. The tissue is analyzed for the presences of cancer cells.
- CT scan or MRI:
These tests will give doctors a detailed picture of any abnormalities in the body. For a CT scan, the patient often swallows a dye that coats the throat and provides a better image. An MRI is a better tool if the patient is pregnant because the test uses no radiation.
Anaplastic astrocytoma, Astrocytoma, Central neurocytoma, Choroid plexus carcinoma, Choroid plexus papilloma, Choroid plexus tumor, Dysembryoplastic neuroepithelial tumour, Ependymal tumor, Fibrillary astrocytoma, Giant-cell glioblastoma, Glioblastoma multiforme, Gliomatosis cerebri, Gliosarcoma, Hemangiopericytoma, Medulloblastoma, Medulloepithelioma, Meningeal carcinomatosis, Neuroblastoma, Neurocytoma, Oligoastrocytoma, Oligodendroglioma, Optic nerve sheath meningioma, Pediatric ependymoma, Pilocytic astrocytoma, Pinealoblastoma, Pineocytoma, Pleomorphic anaplastic neuroblastoma, Pleomorphic xanthoastrocytoma, Primary central nervous system lymphoma, Sphenoid wing meningioma, Subependymal giant cell astrocytoma, Subependymoma, Trilateral retinoblastoma.
Staging cancer is a way of marking the cancer’s progression and is measured on a 0 to 4 (IV) scale. To determine
each stage, smaller categories must be defined first: T. N. M. (tumor, lymph nodes, and metastasis). These were developed by the American Joint Committee on Cancer.
DSRCT is frequently misdiagnosed. Adult patients should always be referred to a sarcoma specialist. This is an aggressive, rare, fast spreading tumor and both pediatric and adult patients should be treated at a sarcoma center.
There is no standard protocol for the disease; however, recent journals and studies have reported that some patients respond to high-dose (P6 Protocol) chemotherapy, maintenance chemotherapy, debulking operation, cytoreductive surgery, and radiation therapy. Other treatment options include: hematopoietic stem cell transplantation, intensity-modulated radiation Therapy, radiofrequency ablation, stereotactic body radiation therapy, intraperitoneal hyperthermic chemoperfusion, and clinical trials.
Because this is a rare tumor, not many family physicians or oncologists are familiar with this disease. DSRCT in young patients can be mistaken for other abdominal tumors including rhabdomyosarcoma, neuroblastoma, and mesenteric carcinoid. In older patients DSRCT can resemble lymphoma, peritoneal mesothelioma, and peritoneal carcinomatosis. In males DSRCT may be mistaken for germ cell or testicular cancer while in females DSRCT can be mistaken for Ovarian cancer. DSRCT shares characteristics with other small-round blue cell cancers including Ewing's sarcoma, acute leukemia, small cell mesothelioma, neuroblastoma, primitive neuroectodermal tumor, rhabdomyosarcoma, and Wilms' tumor.
The treatment of a Pancoast lung cancer may differ from that of other types of non-small cell lung cancer. Its position and close proximity to vital structures (such as nerves and spine) may make surgery difficult. As a result, and depending on the stage of the cancer, treatment may involve radiation and chemotherapy given prior to surgery (neoadjuvant treatment).
Surgery may consist of the removal of the upper lobe of a lung together with its associated structures (subclavian artery, vein, branches of the brachial plexus, ribs and vertebral bodies), as well as mediastinal lymphadenectomy. Surgical access may be via thoracotomy from the back or the front of the chest and modifications
Criteria for CSF abnormalities:
- Increased opening pressure (> 200mm of H2O)
- Increased Leukocytes (>4/mm3)
- Elevated protein (>50 mg/dL)
- Decreased glucose (<60 mg/dL)
Tumor Markers:
- Carcinoembryonic antigin (CEA)
- alpha-fetoprotein
- beta-human chorionic gonadotropin
- carbohydrate antigen19-9
- creatine-kinase BB
- isoenzyme
- tissue polypeptide antigen
- beta2-microglobulin,
- beta-glucoronidase
- lactate dehydrogenase isoenzyme-5
- vascular endothelial growth factor
These markers can be good indirect indicator of NM but most are not sensitive enough to improve cytogical diagnosis.
Avoiding false-negative
- Draw CSF from symptomatic or radiographically demonstrated disease.
- Draw large amount of CSF (>10.5mL).
- Don't delay processing of specimen.
- Obtain at least 2 samples. The first sample has diagnostic sensitivity of 54% but with repeated sampling, diagnostic sensitivity is increased to 91%.
Ideal procedure for diagnosis:
Lumbar puntures --> cranial MRI --> spinal MRI --> radioisotope CSF flow --> ventricular or lateral cervical spine CSF analysis (if previous step yields no definitive answer)
The median survival time of patients without treatment is four to six weeks. The best prognosis are seen from NM due to breast cancer with the median overall survival of no more than six months after diagnosis of NM. Death are generally due to progressive neurological dysfunction. Treatment is meant to stabilize neurological function and prolong survival. Neurological dysfunction usually cannot be fixed but progressive dysfunction can be halted and survival may be increased to four to six months.
Factors that lower survival:
Much of prognosis can be determined from the damage due to primary cancer. Negative hormone receptor status, poor performance status, more than 3 chemotherapy regimes, and high Cyfra 21-1 level at diagnosis, all indicates lower survival period of patients with NM. Cyfra 21-1 is a fragment of the cytokeratin 19 and may reflect the tumor burden within the CSF.
Avoidance of recognised risk factors (as described above) is the single most effective form of prevention. Regular dental examinations may identify pre-cancerous lesions in the oral cavity.
When diagnosed early, oral, head and neck cancers can be treated more easily and the chances of survival increase tremendously. As of 2017 it was not known if existing HPV vaccines can help prevent head and neck cancer.
Clinically symptomatic CNS metastases are reported in 10–15% of patients with metastatic breast cancer; in large autopsy studies, up to 40% of women who died of metastatic breast cancer were reported to have at least one brain metastasis. CNS metastases are often viewed by patients and doctors as a late complication of metastatic breast cancer for which few effective treatments exist. In most cases, CNS involvement occurs after metastatic dissemination to the bones, liver and/or lungs has already occurred; for that reason, many patients already have refractory, terminal breast cancer by the time they are diagnosed with brain metastases. The diagnosis of brain metastases from breast cancer relies mainly on patient-reported symptoms and neuroimaging. The role of imaging in patients with suspected brain metastases is a very good modality to aid in diagnosis. According to Weil et al., 2005, neuroimaging such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) prove to be very effective in the diagnosis of brain and central nervous system metastases.
Symptoms of brain metastases from breast cancer are:
- new-onset headache
- changes in mental status, cognition and behavior
- ataxia
- cranial neuropathy, which may cause diplopia and Bell's palsy
- vomiting and nausea
- deficits in sensation, motor function, and speech
Of all brain-metastatic patients, those with a controlled extra-cranial tumor, age less than 65 years and a favorable general performance (Karnofsky performance status ≥70) fare best; older patients with a Karnofsky performance status below 70 do poorly. Effective treatments for brain metastases from breast cancer exist, although symptomatic therapy alone may be chosen for those with poor performance status. Corticosteroids are crucial to the treatment of brain metastases from any source (including the breast), and are effective in reducing peri-tumoral edema and providing symptomatic relief. Chemotherapy has not been found to be effective in the treatment of brain metastases from breast cancer, due to the inability of most chemotheraputic agents to penetrate the blood–brain barrier. Whole-brain radiation may provide a median survival of 4 to 5 months, which can be further extended by months with stereotactic surgery. Several non-randomized studies have suggested that stereotactic surgery may provide a nearly equivalent outcome, compared with surgery followed by whole brain-irradiation. Surgery tends to reduce symptoms quickly and prolong life, with an improved quality of life. Multiple metastases (up to three) may be removed surgically with a risk similar to that of a single lesion, providing similar benefits. Adjuvant radiotherapy follows surgical resection; this combined approach has been shown to prolong median survival up to 12 months, depending on the factors noted above. There is evidence that surgery may be useful in select patients with recurrent brain metastases. Mean survival from diagnosis of a brain metastasis varies between studies, ranging from 2 to 16 months (depending on involvement of the CNS, the extent of the extra-cranial metastatic disease, and the treatment applied). The mean 1-year survival is estimated at 20%. Improvements in the treatment of brain metastases are clearly needed.
A retrospective study of 83 women with sex cord–stromal tumours (73 with granulosa cell tumour and 10 with Sertoli-Leydig cell tumour), all diagnosed between 1975 and 2003, reported that survival was higher with age under 50, smaller tumour size, and absence of residual disease. The study found no effect of chemotherapy. A retrospective study of 67 children and adolescents reported some benefit of cisplatin-based chemotherapy.
In the detection of bone metastases, skeletal scintigraphy (bone scan) is very sensitive and is recommended as the first imaging study in asymptomatic individuals with suspected breast-cancer metastases. X-ray radiography is recommended if there is abnormal radionuclide uptake from the bone scan and in assessing the risk of pathological fractures, and is recommended as the initial imaging study in patients with bone pain. MRI or the combination PET-CT may be considered for cases of abnormal radionuclide uptake on bone scan, when radiography does not give an acceptably clear result.
There is no simple and reliable way to test for ovarian cancer in women who do not have any signs or symptoms. The Pap test does not screen for ovarian cancer.
Screening is not recommended in women who are at average risk, as evidence does not support a reduction in death and the high rate of false positive tests may lead to unneeded surgery, which is accompanied by its own risks.
Ovarian cancer is usually only palpable in advanced stages. Screening is not recommended using CA-125 measurements, HE4 levels, ultrasound, or adnexal palpation in women who are at average risk. Risk of developing ovarian cancer in those with genetic factors can be reduced. Those with a genetic predisposition may benefit from screening. This high risk group has benefited with earlier detection.
Ovarian cancer has low prevalence, even in the high-risk group of women from the ages of 50 to 60 (about one in 2000), and screening of women with average risk is more likely to give ambiguous results than detect a problem which requires treatment. Because ambiguous results are more likely than detection of a treatable problem, and because the usual response to ambiguous results is invasive interventions, in women of average risk, the potential harms of having screening without an indication outweigh the potential benefits. The purpose of screening is to diagnose ovarian cancer at an early stage, when it is more likely to be treated successfully.
Screening with transvaginal ultrasound, pelvic examination, and CA-125 levels can be used instead of preventative surgery in women who have BRCA1 or BRCA2 mutations. This strategy has shown some success.
Definitive diagnosis of these tumours is based on the histology of tissue obtained in a biopsy or surgical resection. In a retrospective study of 72 cases in children and adolescents, the histology was important to prognosis.
A number of molecules have been proposed as markers for this group of tumours. CD56 may be useful for distinguishing sex cord–stromal tumours from some other types of tumours, although it does not distinguish them from neuroendocrine tumours. Calretinin has also been suggested as a marker. For diagnosis of granulosa cell tumour, inhibin is under investigation.
On magnetic resonance imaging, a fibroma may produce one of several imaging features that might be used in the future to identify this rare tumour prior to surgery.
Screening by hysteroscopy to obtain cell samples obtained for histological examination is being developed. This is similar to the current pap smear that is used to detect cervical cancer. The UK Collaborative Trial of Ovarian Cancer Screening is testing a screening technique that combines CA-125 blood tests with transvaginal ultrasound. Other studies suggest that this screening procedure may be effective. However, it's not yet clear if this approach could actually help to save lives—the full results of the trial will be published in 2015. One major problem with screening is no clear progression of the disease from stage I (noninvasive) to stage III (invasive) is seen, and it may not be possible to find cancers before they reach stage III. Another problem is that screening methods tend to find too many suspicious lesions, most of which are not cancer, but malignancy can only be assessed with surgery. The ROCA method combined with transvaginal ultrasonography is being researched in high-risk women to determine if it is a viable screening method. It is also being investigated in normal-risk women as it has shown promise in the wider population. Studies are also in progress to determine if screening helps detect cancer earlier in people with BRCA mutations.
Specific treatment depends on the location, type, and stage of the tumour. Treatment may involve surgery, radiotherapy, or chemotherapy, alone or in combination. This is a specialised area which requires the coordinated expertise of ear, nose and throat (ENT) surgeons (Otorhinolaryngologists) and Oncologists. A severely affected patient may require a laryngectomy, the complete or partial removal of the vocal cords.
A CT scan can detect bone metastases before becoming symptomatic in patients diagnosed with tumors with risk of spread to the bones. Even sclerotic bone metastases are generally less radiodense than enostoses, and it has been suggested that bone metastasis should be the favored diagnosis between the two for bone lesions lower than a cutoff of 1060 Hounsfield units (HU).
Adenocarcinoma is a cancer of epithelial tissue that has glandular characteristics. Several head and neck cancers are adenocarcinomas (either of intestinal or non-intestinal cell-type).
Aside from cancer general symptoms such as malaise, fever, weight loss and fatigue, Pancoast tumour can include a complete Horner's syndrome in severe cases: miosis (constriction of the pupils), anhidrosis (lack of sweating), ptosis (drooping of the eyelid) and enophthalmos (sunken eyeball). In progressive cases, the brachial plexus is also affected, causing pain and weakness in the muscles of the arm and hand with a symptomatology typical of thoracic outlet syndrome. The tumour can also compress the recurrent laryngeal nerve and from this a hoarse voice and bovine cough may occur.
In superior vena cava syndrome, obstruction of the superior vena cava by a tumour (mass effect) causes facial swelling cyanosis and dilatation of the veins of the head and neck.
A Pancoast tumor is an apical tumour that is typically found in conjunction with a smoking history. The clinical signs and symptoms can be confused with neurovascular compromise at the level of the superior thoracic aperture. The patient's smoking history, rapid onset of clinical signs and symptoms and pleuritic pain can suggest an apical tumour. A Pancoast tumor can give rise to both Pancoast syndrome and Horner's syndrome. When the brachial plexus roots are involved it will produce Pancoast syndrome; involvement of sympathetic fibres as they exit the cord at T1 and ascend to the superior cervical ganglion will produce Horner's syndrome.
The diagnosis of primary spinal cord tumors is difficult, mainly due to their symptoms, which in early stages mimic more common and benign degenerative spinal diseases. MRI and bone scanning are used for diagnostic purposes. This assesses not only the location of the tumor(s) but also their relationship with the spinal cord and the risk of cord compression.
Screening for colonic polyps as well as preventing them has become an important part of the management of the condition. Medical societies have established guidelines for colorectal screening in order to prevent adenomatous polyps and to minimize the chances of developing colon cancer. It is believed that some changes in the diet might be helpful in preventing polyps from occurring but there is no other way to prevent the polyps from developing into cancerous growths than by detecting and removing them.
According to the guidelines established by the American Cancer Society, individuals who reach the age of 50 should perform an occult blood test yearly. Colon polyps as they grow can sometimes cause bleeding within the intestine, which can be detected with the help of this test. Also, persons in their 50s are recommended to have flexible sigmoidoscopies performed once in 3 to 5 years to detect any abnormal growth which could be an adenomatous polyp. If adenomatous polyps are detected during this procedure, it is most likely that the patient will have to undergo a colonoscopy. Medical societies recommend colonoscopies every ten years starting at age 50 as a necessary screening practice for colon cancer. The screening provides an accurate image of the intestine and also allows the removal of the polyp, if found. Once an adenomatous polyp is identified during colonoscopy, there are several methods of removal including using a snare or a heating device. Colonoscopies are preferred over sigmoidoscopies because they allow the examination of the entire colon; a very important aspect, considering that more than half of the colonic polyps occur in the upper colon, which is not reached during sigmoidoscopies.
It has been statistically demonstrated that screening programs are effective in reducing the number of deaths caused by colon cancer due to adenomatous polyps. While there are risks of complications associated with colonoscopies, those risks are extremely low at approximately 0.35 percent. For comparison, the lifetime risk of developing colon cancer is around 6 percent. As there is a small likelihood of recurrence, surveillance after polyp removal is recommended.
For many patients with stage I cancer, adjuvant (preventative) therapy following surgery may not be appropriate and patients will undergo surveillance instead. The form this surveillance takes, e.g. the type and frequency of investigations and the length time it should continue, will depend on the type of cancer (non-seminoma or seminoma), but the aim is to avoid unnecessary treatments in the many patients who are cured by their surgery, and ensure that any relapses with metastases (secondary cancers) are detected early and cured. This approach ensures that chemotherapy and or radiotherapy is only given to the patients that need it. The number of patients ultimately cured is the same using surveillance as post-operative “adjuvant” treatments, but the patients have to be prepared to follow a prolonged series of visits and tests.
For both non-seminomas and seminomas, surveillance tests generally include physical examination, blood tests for tumor markers, chest x-rays and CT scanning. However, the requirements of a surveillance program differ according to the type of disease since, for seminoma patients, relapses can occur later and blood tests are not as good at indicating relapse.
CT scans are performed on the abdomen (and sometimes the pelvis) and also the chest in some hospitals. Chest x-rays are increasingly preferred for the lungs as they give sufficient detail combined with a lower false-positive rate and significantly smaller radiation dose than CT.
The frequency of CT scans during surveillance should ensure that relapses are detected at an early stage while minimizing the radiation exposure.
For patients treated for stage I non-seminoma, a randomised trial (Medical Research Council TE08) showed that, when combined with the standard surveillance tests described above, 2 CT scans at 3 and 12 months were as good as 5 over 2 years in detecting relapse at an early stage.
For patients treated for stage I seminoma who choose surveillance rather than undergoing adjuvant therapy, there have been no randomized trials to determine the optimum frequency of scans and visits, and the schedules vary very widely across the world, and within individual countries. In the UK there is an ongoing clinical trial called TRISST. This is assessing how often scans should take place and whether magnetic resonance imaging (MRI) can be used instead of CT scans. MRI is being investigated because it does not expose the patient to radiation and so, if it is shown to be as good at detecting relapses, it may be preferable to CT.
For more advanced stages of testicular cancer, and for those cases in which radiation therapy or chemotherapy was administered, the extent of monitoring (tests) after treatment will vary on the basis of the circumstances, but normally should be done for five years in uncomplicated cases and for longer in those with higher risks of relapse.
After removal, the testicle is fixed with Bouin's solution because it better conserves some morphological details such as nuclear conformation. Then the testicular tumor is staged by a pathologist according to the TNM Classification of Malignant Tumors as published in the AJCC Cancer Staging Manual. Testicular cancer is categorized as being in one of three stages (which have subclassifications). The size of the tumor in the testis is irrelevant to staging. In broad terms, testicular cancer is staged as follows:
- Stage I: the cancer remains localized to the testis.
- Stage II: the cancer involves the testis and metastasis to retroperitoneal and/or paraaortic lymph nodes (lymph nodes below the diaphragm).
- Stage III: the cancer involves the testis and metastasis beyond the retroperitoneal and paraaortic lymph nodes. Stage 3 is further subdivided into non-bulky stage 3 and bulky stage 3.
Further information on the detailed staging system is available on the website of the American Cancer Society.