Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The official recommendation from the United States Preventive Services Task Force is that for persons that do not fall within an at-risk population and are asymptomatic, there is not enough evidence to prove that there is any benefit in screening for vitamin D deficiency.
The serum concentration of 25(OH)D is typically used to determine vitamin D status. Most vitamin D is converted to 25(OH)D in the serum, giving an accurate picture of vitamin D status.
The level of serum 1,25(OH)D is not usually used to determine vitamin D status because it often is regulated by other hormones in the body such as parathyroid hormone. The levels of 1,25(OH)D can remain normal even when a person may be vitamin D deficient.
Serum level of 25(OH)D is the laboratory test ordered to indicate whether or not a person has vitamin D deficiency or insufficiency.
It is also considered reasonable to treat at-risk persons with vitamin D supplementation without checking the level of 25(OH)D in the serum, as vitamin D toxicity has only been rarely reported to occur.
Levels of 25(OH)D that are consistently above 200 ng/mL (500 nmol/L) are thought to be potentially toxic, although data from humans are sparse. Vitamin D toxicity usually results from taking supplements in excess. Hypercalcemia is often the cause of symptoms, and levels of 25(OH)D above 150 ng/mL (375 nmol/L) are usually found, although in some cases 25(OH)D levels may appear to be normal. Periodic measurement of serum calcium in individuals receiving large doses of vitamin D is recommended.
The National Institutes of Health has found that "Large amounts of folic acid can mask the damaging effects of vitamin B deficiency by correcting the megaloblastic anemia caused by vitamin B deficiency without correcting the neurological damage that also occurs", there are also indications that "high serum folate levels might not only mask vitamin B deficiency, but could also exacerbate the anemia and worsen the cognitive symptoms associated with vitamin B deficiency". Due to the fact that in the United States legislation has required enriched flour to contain folic acid to reduce cases of fetal neural-tube defects, consumers may be ingesting more than they realize. To counter the masking effect of B deficiency the NIH recommends "folic acid intake from fortified food and supplements should not exceed 1,000 μg daily in healthy adults." Most importantly, B deficiency needs to be treated with B repletion. Limiting folic acid will not counter the irrevocable neurological damage that is caused by untreated B deficiency.
Serum B levels are often low in B deficiency, but if other features of B deficiency are present with normal B then further investigation is warranted. One possible explanation for normal B levels in B deficiency is antibody interference in people with high titres of intrinsic factor antibody.
Some researchers propose that the current standard norms of vitamin B levels are too low.
One Japanese study states the normal limits as 500–1,300 pg/mL. Range of vitamin B12 levels in humans is considered as normal: >300 pg/mL; moderate deficiency: 201–300 pg/mL; and severe deficiency: <201 pg/mL.
Serum vitamin B tests results are in pg/mL (picograms/milliliter) or pmol/L (picomoles/liter). The laboratory reference ranges for these units are similar, since the molecular weight of B is approximately 1000, the difference between mL and L. Thus: 550 pg/mL = 400 pmol/L.
Serum homocysteine and methylmalonic acid levels are considered more reliable indicators of B deficiency than the concentration of B in blood. The levels of these substances are high in B deficiency and can be helpful if the diagnosis is unclear.
Routine monitoring of methylmalonic acid levels in urine is an option for people who may not be getting enough dietary B, as a rise in methylmalonic acid levels may be an early indication of deficiency.
If nervous system damage is suspected, B analysis in cerebrospinal fluid is possible, though such an invasive test should be considered only if blood testing is inconclusive.
The Schilling test has been largely supplanted by tests for antiparietal cell and intrinsic factor antibodies.
Retinyl esters can be distinguished from retinol in serum and other tissues and quantified with the use of methods such as high-performance liquid chromatography.
Elevated amounts of retinyl ester (i.e., > 10% of total circulating vitamin A) in the fasting state have been used as markers for chronic hypervitaminosis A in humans and monkeys. This increased retinyl ester may be due to decreased hepatic uptake of vitamin A and the leaking of esters into the bloodstream from saturated hepatic stellate cells.
Assessing vitamin A status in persons with subtoxicity or toxicity is complicated because serum retinol concentrations are not sensitive indicators in this range of liver vitamin A reserves. The range of serum retinol concentrations under normal conditions is 1–3 μmol/l and, because of homeostatic regulation, that range varies little with widely disparate vitamin A intakes
The assessment of vitamin B status is essential, as the clinical signs and symptoms in less severe cases are not specific. The three biochemical tests most widely used are the activation coefficient for the erythrocyte enzyme aspartate aminotransferase, plasma PLP concentrations, and the urinary excretion of vitamin B degradation products, specifically urinary PA. Of these, plasma PLP is probably the best single measure, because it reflects tissue stores. Plasma PLP less than 10 nmol/l is indicative of vitamin B deficiency. A PLP concentration greater than 20 nmol/l has been chosen as a level of adequacy for establishing Estimated Average Requirements and Recommended Daily Allowances in the USA. Urinary PA is also an indicator of vitamin B deficiency; levels of less than 3.0 mmol/day is suggestive of vitamin B deficiency.
The classic syndrome for vitamin B deficiency is rare, even in developing countries. A handful of cases were seen between 1952 and 1953, particularly in the United States, and occurred in a small percentage of infants who were fed a formula lacking in pyridoxine.
In the US, the Dietary Reference Intake for adults is 55 µg/day. In the UK it is 75 µg/day for adult males and 60 µg/day for adult females. 55 µg/day recommendation is based on full expression of plasma glutathione peroxidase. Selenoprotein P is a better indicator of selenium nutritional status, and full expression of it would require more than 66 µg/day.
Day to day requirements of vitamin d are set around 800-1000IU to maintain healthy levels which in most cases can be provided by sun exposure. Increased amounts are required for individuals who are previously diagnosed as deficient. For those of moderate deficiencies,oral supplementation can be implemented into the diet at levels of 3000-5000 IU per day for a 6- to 12-week period continued by an ongoing reduced dose of 1000- 2000 IU per day to maintain stores in the body.
Severe deficiency is treated through megadose therapy where patients are given doses around 100 000 IU to assist in raising stores faster to ensure physical health in restored to prevent further illness or disease.
Adverse effects have been documented from vitamin B supplements, but never from food sources. Damage to the dorsal root ganglia is documented in human cases of overdose of pyridoxine. Although it is a water-soluble vitamin and is excreted in the urine, doses of pyridoxine in excess of the dietary upper limit (UL) over long periods cause painful and ultimately irreversible neurological problems. The primary symptoms are pain and numbness of the extremities. In severe cases, motor neuropathy may occur with "slowing of motor conduction velocities, prolonged F wave latencies, and prolonged sensory latencies in both lower extremities", causing difficulty in walking. Sensory neuropathy typically develops at doses of pyridoxine in excess of 1,000 mg per day, but adverse effects can occur with much less, so doses over 200 mg are not considered safe. Symptoms among women taking lower doses have been reported.
Existing authorizations and valuations vary considerably worldwide. As noted, the U.S. Institute of Medicine set an adult UL at 100 mg/day. The European Community Scientific Committee on Food defined intakes of 50 mg of vitamin B per day as harmful and established a UL of 25 mg/day. The nutrient reference values in Australia and New Zealand recommend an upper limit of 50 mg/day in adults. "The same figure was set for pregnancy and lactation as there is no evidence of teratogenicity at this level. The UL was set based on metabolic body size and growth considerations for all other ages and life stages except infancy. It was not possible to set a UL for infants, so intake is recommended in the form of food, milk or formula." The ULs were set using results of studies involving long-term oral administration of pyridoxine at doses of less than 1 g/day. "A no-observed-adverse-effect level (NOAEL) of 200 mg/day was identified from the studies of Bernstein & Lobitz (1988) and Del Tredici "et al" (1985). These studies involved subjects who had generally been on the supplements for five to six months or less. The study of Dalton and Dalton (1987), however, suggested the symptoms might take substantially longer than this to appear. In this latter retrospective survey, subjects who reported symptoms had been on supplements for 2.9 years, on average. Those reporting no symptoms had taken supplements for 1.9 years."
Pregnancy also poses as another high risk factor for vitamin D deficiency. The status levels of vitamin D during the last stages of pregnancy directly impact the new borns first initial months of life. Babies who are exclusively breastfed with minimal exposure to sunlight or supplementation can be at greater risk of vitamin D deficiency,as human milk has minimal vitamin D present. Recommendations for infants of the age 0–12 months are set at 5 ug/day, to assist in preventing rickets in young babies. 80% of dark skinned and or veiled women in Melbourne were found to have serum levels lower than 22.5 nmol/L considering them to be within moderate ranges of vitamin D deficiency.
Treatment of VAD can be undertaken with both oral and injectable forms, generally as vitamin A palmitate.
- As an oral form, the supplementation of vitamin A is effective for lowering the risk of morbidity, especially from severe diarrhea, and reducing mortality from measles and all-cause mortality. Vitamin A supplementation of children under five who are at risk of VAD can reduce all‐cause mortality by 23%. Some countries where VAD is a public-health problem address its elimination by including vitamin A supplements available in capsule form with national immunization days (NIDs) for polio eradication or measles. Additionally, the delivery of vitamin A supplements, during integrated child health events such as child health days, have helped ensure high coverage of vitamin A supplementation in a large number of least developed countries. Child health events enable many countries in West and Central Africa to achieve over 80% coverage of vitamin A supplementation. According to UNICEF data, in 2013 worldwide, 65% of children between the ages of 6 and 59 months were fully protected with two high-dose vitamin A supplements. Vitamin A capsules cost about US$0.02. The capsules are easy to handle; they do not need to be stored in a refrigerator or vaccine carrier. When the correct dosage is given, vitamin A is safe and has no negative effect on seroconversion rates for oral polio or measles vaccines. However, because the benefit of vitamin A supplements is transient, children need them regularly every four to six months. Since NIDs provide only one dose per year, NIDs-linked vitamin A distribution must be complemented by other programs to maintain vitamin A in children Maternal high supplementation benefits both mother and breast-fed infant: high-dose vitamin A supplementation of the lactating mother in the first month postpartum can provide the breast-fed infant with an appropriate amount of vitamin A through breast milk. However, high-dose supplementation of pregnant women should be avoided because it can cause miscarriage and birth defects.
- Food fortification is also useful for improving VAD. A variety of oily and dry forms of the retinol esters, retinyl acetates, and retinyl palmitate are available for food fortification of vitamin A. Margarine and oil are the ideal food vehicles for vitamin A fortification. They protect vitamin A from oxidation during storage and prompt absorption of vitamin A. Beta-carotene and retinyl acetate or retinyl palmitate are used as a form of vitamin A for vitamin A fortification of fat-based foods. Fortification of sugar with retinyl palmitate as a form of vitamin A has been used extensively throughout Central America. Cereal flours, milk powder, and liquid milk are also used as food vehicles for vitamin A fortification. Genetic engineering is another method of food fortification, and this has been achieved with golden rice, but opposition to genetically modified foods has prevented its use as of July 2012.
- Dietary diversification can also control VAD. Nonanimal sources of vitamin A which contain preformed vitamin A account for greater than 80% of intake for most individuals in the developing world. The increase in consumption of vitamin A-rich foods of animal origin in addition to fruits and vegetables has beneficial effects on VAD. Researchers at the U. S. Agricultural Research Service have been able to identify genetic sequences in corn that are associated with higher levels of beta-carotene, the precursor to vitamin A. They found that breeders can cross certain variations of corn to produce a crop with an 18-fold increase in beta-carotene. Such advancements in nutritional plant breeding could one day aid in the illnesses related to VAD in developing countries.
Overt clinical signs are rarely seen among inhabitants of the developed countries. The assessment of Riboflavin status is essential for confirming cases with unspecific symptoms where deficiency is suspected.
- Glutathione reductase is a nicotinamide adenine dinucleotide phosphate (NADPH) and FAD-dependent enzyme, and the major flavoprotein in erythrocyte. The measurement of the activity coefficient of erythrocyte glutathione reductase (EGR) is the preferred method for assessing riboflavin status. It provides a measure of tissue saturation and long-term riboflavin status. In vitro enzyme activity in terms of activity coefficients (AC) is determined both with and without the addition of FAD to the medium. ACs represent a ratio of the enzyme’s activity with FAD to the enzyme’s activity without FAD. An AC of 1.2 to 1.4, riboflavin status is considered low when FAD is added to stimulate enzyme activity. An AC > 1.4 suggests riboflavin deficiency. On the other hand, if FAD is added and AC is < 1.2, then riboflavin status is considered acceptable. Tillotson and Bashor reported that a decrease in the intakes of riboflavin was associated with increase in EGR AC. In the UK study of Norwich elderly, initial EGR AC values for both males and females were significantly correlated with those measured 2 years later, suggesting that EGR AC may be a reliable measure of long-term biochemical riboflavin status of individuals. These findings are consistent with earlier studies.
- Experimental balance studies indicate that urinary riboflavin excretion rates increase slowly with increasing intakes, until intake level approach 1.0 mg/d, when tissue saturation occurs. At higher intakes, the rate of excretion increases dramatically. Once intakes of 2.5 mg/d are reached, excretion becomes approximately equal to the rate of absorption (Horwitt et al., 1950) (18). At such high intake a significant proportion of the riboflavin intake is not absorbed. If urinary riboflavin excretion is <19 µg/g creatinine (without recent riboflavin intake) or < 40 µg per day are indicative of deficiency.
Because riboflavin is fluorescent under UV light, dilute solutions (0.015-0.025% w/w) are often used to detect leaks or to demonstrate coverage in an industrial system such a chemical blend tank or bioreactor. (See the ASME BPE section on Testing and Inspection for additional details.)
Global efforts to support national governments in addressing VAD are led by the Global Alliance for Vitamin A (GAVA), which is an informal partnership between A2Z, the Canadian International Development Agency, Helen Keller International, Micronutrient Initiative, UNICEF, USAID, and the World Bank. Joint GAVA activity is coordinated by the Micronutrient Initiative.
Vitamin Angels has committed itself to eradicating childhood blindness due to VAD on the planet by the year 2020. Operation 20/20 was launched in 2007 and will cover 18 countries. The program gives children two high-dose vitamin A and antiparasitic supplements (twice a year for four years), which provides children with enough of the nutrient during their most vulnerable years to prevent them from going blind and suffering from other life-threatening diseases related to VAD.
About 75% the vitamin A required for supplementation activity by developing countries is supplied by the Micronutrient Initiative with support from the Canadian International Development Agency.
An estimated 1.25 million deaths due to VAD have been averted in 40 countries since 1998.
In 2008, an estimated annual investment of US$60 million in vitamin A and zinc supplementation combined would yield benefits of more than US$1 billion per year, with every dollar spent generating benefits of more than US$17. These combined interventions were ranked by the Copenhagen Consensus 2008 as the world’s best development investment.
Some situations that increase the need for folate include the following:
- hemorrhage
- kidney dialysis
- liver disease
- malabsorption, including celiac disease and fructose malabsorption
- pregnancy and lactation (breastfeeding)
- tobacco smoking
- alcohol consumption
Folate is found in leafy green vegetables. Multi-vitamins also tend to include Folate as well as many other B vitamins. B vitamins, such as Folate, are water-soluble and excess is excreted in the urine.
When cooking, use of steaming, a food steamer, or a microwave oven can help keep more folate content in the cooked foods, thus helping to prevent folate deficiency.
Folate deficiency during human pregnancy has been associated with an increased risk of infant neural tube defects. Such deficiency during the first four weeks of gestation can result in structural and developmental problems. NIH guidelines recommend oral B vitamin supplements to decrease these risks near the time of conception and during the first month of pregnancy.
It can occur in patients with severely compromised intestinal function, those undergoing total parenteral nutrition, those who have had gastrointestinal bypass surgery, and also in persons of advanced age (i.e., over 90).
People dependent on food grown from selenium-deficient soil may be at risk for deficiency. Increased risk for developing various diseases has also been noted, even when certain individuals lack optimal amounts of selenium, but not enough to be classified as deficient.
For some time now, it has been reported in medical literature that a pattern of side-effects possibly associated with cholesterol-lowering drugs (e.g., statins) may resemble the pathology of selenium deficiency.
The prevalence of vitamin K deficiency varies by geographic region. For infants in the United States, vitamin K deficiency without bleeding may occur in as many as 50% of infants younger than 5 days old, with the classic hemorrhagic disease occurring in 0.25-1.7% of infants. Therefore, the Committee on Nutrition of the American Academy of Pediatrics recommends that 0.5 to 1.0 mg Vitamin K be administered to all newborns shortly after birth.
Postmenopausal and elderly women in Thailand have high risk of Vitamin K deficiency, compared with the normal value of young, reproductive females.
Current dosage recommendations for Vitamin K may be too low. The deposition of calcium in soft tissues, including arterial walls, is quite common, especially in those suffering from atherosclerosis, suggesting that Vitamin K deficiency is more common than previously thought.
Because colonic bacteria synthesize a significant portion of the Vitamin K required for human needs, individuals with disruptions to or insufficient amounts of these bacteria can be at risk for Vitamin K deficiency. Newborns, as mentioned above, fit into this category, as their colons are frequently not adequately colonized in the first five to seven days of life. (Consumption of the mother's milk can undo this temporary problem.) Another at-risk population comprises those individuals on any sort of long-term antibiotic therapy, as this can diminish the population of normal gut flora.
The treatment is some form of Vitamin E supplementation.
Aggressive vitamin E replacement therapy has been shown to either prevent, halt or improve visual abnormalities.
Vitamin E deficiency is rare and is almost never caused by a poor diet. Instead, there are three specific situations when a vitamin E deficiency is likely to occur:
- Premature, very low birth weight infants - birth weights less than 1500 grams, or 3.5 pounds. A neonatologist, a pediatrician specializing in the care of newborns, typically evaluates the nutritional needs of premature infants.
- Rare disorders of fat metabolism - There is a rare genetic condition termed isolated vitamin E deficiency or 'ataxia with isolated with vitamin E deficiency', caused by mutations in the gene for the tocopherol transfer protein. These individuals have an extremely poor capacity to absorb vitamin E and develop neurological complications that are reversed by high doses of vitamin E.
- Fat malabsorption - Some dietary fat is needed for the absorption of vitamin E from the gastrointestinal tract. Anyone diagnosed with cystic fibrosis, individuals who have had part or all of their stomach removed or who have had a gastric bypass, and individuals with malabsorptive problems such as Crohn's disease, liver disease or exocrine pancreatic insufficiency may not absorb fat (people who cannot absorb fat often pass greasy stools or have chronic diarrhea and bloating). Abetalipoproteinemia is a rare inherited disorder of fat metabolism that results in poor absorption of dietary fat and vitamin E. The vitamin E deficiency associated with this disease causes problems such as poor transmission of nerve impulses, muscle weakness, and degeneration of the retina that can cause blindness.
Since the essential pathology is due to the inability to absorb vitamin B from the bowels, the solution is therefore injection of IV vitamin B. Timing is essential, as some of the side effects of vitamin B deficiency are reversible (such as RBC indices, peripheral RBC smear findings such as hypersegmented neutrophils, or even high levels of methylmalonyl CoA), but some side effects are irreversible as they are of a neurological source (such as tabes dorsalis, and peripheral neuropathy). High suspicion should be exercised when a neonate, or a pediatric patient presents with anemia, proteinuria, sufficient vitamin B dietary intake, and no signs of pernicious anemia.
In the United States, overdose exposure to all formulations of "vitamins" was reported by 62,562 individuals in 2004 (nearly 80% [~78%, n=48,989] of these exposures were in children under the age of 6), leading to 53 "major" life-threatening outcomes and 3 deaths (2 from vitamins D and E; 1 from polyvitaminic type formula, with iron and no fluoride). This may be compared to the 19,250 people who died of unintentional poisoning of all kinds in the U.S. in the same year (2004). In 2010, 71,000 exposures to various vitamins and multivitamin-mineral formulations were reported to poison control centers, which resulted in 15 major reactions but no deaths.
Before 1998, several deaths per year were associated with pharmaceutical iron-containing supplements, especially brightly colored, sugar-coated, high-potency iron supplements, and most deaths were children. Unit packaging restrictions on supplements with more than 30 mg of iron have since reduced deaths to 0 or 1 per year. These statistics compare with 59 confirmed deaths due to aspirin poisoning in 2003 and 147 deaths known to be associated with acetaminophen-containing products in 2003.
The initial workup of abetalipoproteinemia typically consists of stool sampling, a blood smear, and a fasting lipid panel though these tests are not confirmatory. As the disease is rare, though a genetics test is necessary for diagnosis, it is generally not done initially.
Acanthocytes are seen on blood smear. Since there is no or little assimilation of chylomicrons, their levels in plasma remains low.
The inability to absorb fat in the ileum will result in steatorrhea, or fat in the stool. As a result, this can be clinically diagnosed when foul-smelling stool is encountered. Low levels of plasma chylomicron are also characteristic.
There is an absence of apolipoprotein B. On intestinal biopsy, vacuoles containing lipids are seen in enterocytes. This disorder may also result in fat accumulation in the liver (hepatic steatosis). Because the epithelial cells of the bowel lack the ability to place fats into chylomicrons, lipids accumulate at the surface of the cell, crowding the functions that are necessary for proper absorption.
Menaquinone (vitamin K), but not phylloquinone (vitamin K), intake is associated with reduced risk of CHD mortality, all-cause mortality and severe aortic calcification.