Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Canadian genetic testing guidelines and recommendations for individuals diagnosed with HCM are as follows:
- The main purpose of genetic testing is for screening family members.
- According to the results, at-risk relatives may be encouraged to undergo extensive testing.
- Genetic testing is not meant for confirming a diagnosis.
- If the diagnosed individual has no relatives that are at risk, then genetic testing is not required.
- Genetic testing is not intended for risk assessment or treatment decisions.
- Evidence only supports clinical testing in predicting the progression and risk of developing complications of HCM.
For individuals "suspected" of having HCM:
- Genetic testing is not recommended for determining other causes of left ventricular hypertrophy (such as "athlete's heart", hypertension, and cardiac amyloidosis).
- HCM may be differentiated from other hypertrophy-causing conditions using clinical history and clinical testing.
Although HCM may be asymptomatic, affected individuals may present with symptoms ranging from mild to critical heart failure and sudden cardiac death at any point from early childhood to seniority. HCM is the leading cause of sudden cardiac death in young athletes in the United States, and the most common genetic cardiovascular disorder. One study found that the incidence of sudden cardiac death in young competitive athletes declined in the Veneto region of Italy by 89% since the 1982 introduction of routine cardiac screening for athletes, from an unusually high starting rate. As of 2010, however, studies have shown that the incidence of sudden cardiac death, among all people with HCM, has declined to one percent or less. Screen-positive individuals who are diagnosed with cardiac disease are usually told to avoid competitive athletics.
HCM can be detected with an echocardiogram (ECHO) with 80%+ accuracy, which can be preceded by screening with an electrocardiogram (ECG) to test for heart abnormalities. Cardiac magnetic resonance imaging (CMR), considered the gold standard for determining the physical properties of the left ventricular wall, can serve as an alternative screening tool when an echocardiogram provides inconclusive results. For example, the identification of segmental lateral ventricular hypertrophy cannot be accomplished with echocardiography alone. Also, left ventricular hypertrophy may be absent in children under thirteen years of age. This undermines the results of pre-adolescents’ echocardiograms. Researchers, however, have studied asymptomatic carriers of an HCM-causing mutation through the use of CMR and have been able to identify crypts in the interventricular septal tissue in these people. It has been proposed that the formation of these crypts is an indication of myocyte disarray and altered vessel walls that may later result in the clinical expression of HCM. A possible explanation for this is that the typical gathering of family history only focuses on whether sudden death occurred or not. It fails to acknowledge the age at which relatives suffered sudden cardiac death, as well as the frequency of the cardiac events. Furthermore, given the several factors necessary to be considered at risk for sudden cardiac death, while most of the factors do not have strong predictive value individually, there exists ambiguity regarding when to implement special treatment.
Diagnosis is typically made via echocardiography. Patients will demonstrate normal systolic function, diastolic dysfunction, and a restrictive filling pattern. 2-dimensional and Doppler studies are necessary to distinguish RCM from constrictive pericarditis. Cardiac MRI and transvenous endomyocardial biopsy may also be necessary in some cases. Reduced QRS voltage on EKG may be an indicator of amyloidosis-induced restrictive cardiomyopathy.
ARVD is an autosomal dominant trait with reduced penetrance. Approximately 40–50% of ARVD patients have a mutation identified in one of several genes encoding components of the desmosome, which can help confirm a diagnosis of ARVD. Since ARVD is an autosomal dominant trait, children of an ARVD patient have a 50% chance of inheriting the disease causing mutation. Whenever a mutation is identified by genetic testing, family-specific genetic testing can be used to differentiate between relatives who are at-risk for the disease and those who are not. ARVD genetic testing is clinically available.
Physical examination
The physical examination is often unremarkable, although an arrhythmia characterized by premature beats may be detected.
Electrocardiogram:
An ECG often shows premature ventricular complexes (PVCs). These typically have an upright morphology on lead II (left bundle branch morphology). This occurs as the ectopic impulses usually arise in the right ventricle. In some case, the ECG may be normal. This is due to the intermittent nature of ventricular arrhythmias, and means that the diagnosis should not be excluded on the basis of a normal ECG.
Holter monitor:
A Holter monitor allows for 24-hour ambulatory ECG monitoring. It facilitates quantification of the frequency and severity of ventricular ectopy, and is important in the management of affected dogs. Boxer breeders are encouraged to Holter their breeding stock annually to screen out affected dogs.
Genetic test:
A genetic test for Boxer cardiomyopathy is now commercially available. The genetic test is not yet accepted as a definitive test and additional diagnostic testing continues to be essential to characterize the phenotype, and to help direct therapeutic interventions.
Echocardiogram:
Echocardiography is recommended to determine if structural heart disease is present. A small percentage of dogs have evidence of myocardial systolic dysfunction, and this may affect the long-term prognosis.
There are no specific diagnostic criteria for TIC, and it can be difficult to diagnose for a number of reasons. First, in patients presenting with both tachycardia and cardiomyopathy, it can be difficult to distinguish which is the causative agent. Additionally, it can occur in patients with or without underlying structural heart disease. Previously normal left ventricular ejection fraction or left ventricular systolic dysfunction out of proportion to a patient’s underlying cardiac disease can be important clues to possible TIC. The diagnosis of TIC is made after excluding other causes of cardiomyopathy and observing resolution of the left ventricular systolic dysfunction with treatment of the tachycardia.
Specific tests that can be used in the diagnosis and monitoring of TIC include:
- electrocardiography (EKG)
- Continuous cardiac rhythm monitoring (e.g. Holter monitor)
- echocardiography
- Radionuclide imaging
- Endomyocardial biopsy
- Cardiac magnetic resonance imaging (CMR)
- N-terminal pro-B-type natriuretic peptide (NT-pro BNP)
Cardiac rhythm monitors can be used to diagnose tachyarrhythmias. The most common modality used is an EKG. A continuous rhythm monitor such as a Holter monitor can be used to characterize the frequency of a tachyarrhythmia over a longer period of time. Additionally, some patients may not present to the clinical setting in an abnormal rhythm, and continuous rhythm monitor can be useful to determine if an arrhythmia is present over a longer duration of time.
To assess cardiac structure and function, echocardiography is the most commonly available and utilized modality. In addition to decreased left ventricular ejection fraction, studies indicate that patients with TIC may have a smaller left ventricular end-diastolic dimension compared to patients with idiopathic dilated cardiomyopathy. Radionuclide imaging can be used as a non-invasive test to detect myocardial ischemia. Cardiac MRI has also been used to evaluate patients with possible TIC. Late-gadolinium enhancement on cardiac MRI indicates the presence of fibrosis and scarring, and may be evidence of cardiomyopathy not due to tachycardia. A decline in serial NT-pro BNP with control of tachyarrhythmia indicates reversibility of the cardiomyopathy, which would also suggest TIC.
People with TIC display distinct changes in endomyocardial biopsies. TIC is associated with the infiltration of CD68 macrophages into the myocardium while CD3 T-cells are very rare. Furthermore, patients with TIC display significant fibrosis due to collagen deposition. The distribution of mitochondria has found to be altered as well, with an enrichment at the intercalated discs (EMID-sign).
TIC is likely underdiagnosed due to attribution of the tachyarrhythmia to the cardiomyopathy. Poor control of the tachyarrhythmia can result in worsening of heart failure symptoms and cardiomyopathy. Therefore, it is important to aggressively treat the tachyarrhythmia and monitor patients for resolution of left ventricular systolic dysfunction in cases of suspected TIC.
There is a long asymptomatic lead-time in individuals with ARVD. While this is a genetically transmitted disease, individuals in their teens may not have any characteristics of ARVD on screening tests.
Many individuals have symptoms associated with ventricular tachycardia, such as palpitations, light-headedness, or syncope. Others may have symptoms and signs related to right ventricular failure, such as lower extremity edema, or liver congestion with elevated hepatic enzymes.
ARVD is a progressive disease. Over time, the right ventricle becomes more involved, leading to right ventricular failure. The right ventricle will fail before there is left ventricular dysfunction. However, by the time the individual has signs of overt right ventricular failure, there will be histological involvement of the left ventricle. Eventually, the left ventricle will also become involved, leading to bi-ventricular failure. Signs and symptoms of left ventricular failure may become evident, including congestive heart failure, atrial fibrillation, and an increased incidence of thromboembolic events.
HFpEF is typically diagnosed with echocardiography. Techniques such as catheterization are invasive procedures and thus reserved for patients with co-morbid conditions or those who are suspected to have HFpEF but lack clear non-invasive findings. Catheterization does represent are more definitive diagnostic assessment as pressure and volume measurements are taken simultaneously and directly. In either technique the heart is evaluated for left ventricular diastolic function. Important parameters include, rate of isovolumic relaxation, rate of ventricular filling, and stiffness.
Frequently patients are subjected to stress echocardiography, which involves the above assessment of diastolic function during exercise. This is undertaken because perturbations in diastole are exaggerated during the increased demands of exercise. Exercise requires increased left ventricular filling and subsequent output. Typically the heart responds by increasing heart rate and relaxation time. However, in patients with HFpEF both responses are diminished due to increased ventricular stiffness. Testing during this demanding state may reveal abnormalities that are not as discernible at rest.
The following screening tool may be useful to patients and medical professionals in determining the need to take further action to diagnose symptoms:
Diastolic dysfunction must be differentiated from diastolic heart failure. Diastolic dysfunction can be found in elderly and apparently quite healthy patients. If diastolic dysfunction describes an abnormal mechanical property, diastolic heart failure describes a clinical syndrome. Mathematics describing the relationship between the ratio of Systole to Diastole in accepted terms of End Systolic Volume to End Diastolic Volume implies many mathematical solutions to forward and backward heart failure.
Criteria for diagnosis of diastolic dysfunction or diastolic heart failure remain imprecise. This has made it difficult to conduct valid clinical trials of treatments for diastolic heart failure. The problem is compounded by the fact that systolic and diastolic heart failure commonly coexist when patients present with many ischemic and nonischemic etiologies of heart failure. Narrowly defined, diastolic failure has often been defined as "heart failure with normal systolic function" (i.e. left ventricular ejection fraction of 60% or more). Chagasic heart disease may represent an optimal academic model of diastolic heart failure that spares systolic function.
A patient is said to have diastolic dysfunction if he has signs and symptoms of heart failure but the left ventricular ejection fraction is normal. A second approach is to use an elevated BNP level in the presence of normal ejection fraction to diagnose diastolic heart failure. Concordance of both volumetric and biochemical measurements and markers lends to even stronger terminology regarding scientific/mathematical expression of diastolic heart failure. These are both probably too broad a definition for diastolic heart failure, and this group of patients is more precisely described as having heart failure with normal systolic function. Echocardiography can be used to diagnose diastolic dysfunction but is a limited modality unless it is supplemented by stress imaging. MUGA imaging is an earlier mathematical attempt to distinguish systolic from diastolic heart failure.
No one single echocardiographic parameter can confirm a diagnosis of diastolic heart failure. Multiple echocardiographic parameters have been proposed as sufficiently sensitive and specific, including mitral inflow velocity patterns, pulmonary vein flow patterns, E:A reversal, tissue Doppler measurements, and M-mode echo measurements (i.e. of left atrial size). Algorithms have also been developed which combine multiple echocardiographic parameters to diagnose diastolic heart failure.
There are four basic Echocardiographic patterns of diastolic heart failure, which are graded I to IV:
- The mildest form is called an "abnormal relaxation pattern", or grade I diastolic dysfunction. On the mitral inflow Doppler echocardiogram, there is reversal of the normal E/A ratio. This pattern may develop normally with age in some patients, and many grade I patients will not have any clinical signs or symptoms of heart failure.
- Grade II diastolic dysfunction is called "pseudonormal filling dynamics". This is considered moderate diastolic dysfunction and is associated with elevated left atrial filling pressures. These patients more commonly have symptoms of heart failure, and many have left atrial enlargement due to the elevated pressures in the left heart.
Grade III and IV diastolic dysfunction are called "restrictive filling dynamics". These are both severe forms of diastolic dysfunction, and patients tend to have advanced heart failure symptoms:
- Class III diastolic dysfunction patients will demonstrate reversal of their diastolic abnormalities on echocardiogram when they perform the Valsalva maneuver. This is referred to as "reversible restrictive diastolic dysfunction".
- Class IV diastolic dysfunction patients will not demonstrate reversibility of their echocardiogram abnormalities, and are therefore said to suffer from "fixed restrictive diastolic dysfunction".
The presence of either class III and IV diastolic dysfunction is associated with a significantly worse prognosis. These patients will have left atrial enlargement, and many will have a reduced left ventricular ejection fraction that indicates a combination of systolic and diastolic dysfunction.
Imaged volumetric definition of systolic heart performance is commonly accepted as ejection fraction. Volumetric definition of the heart in systole was first described by Adolph Fick as cardiac output. Fick may be readily and inexpensively inverted to cardiac input and injection fraction to mathematically describe diastole. Decline of injection fraction paired with decline of E/A ratio seems a stronger argument in support of a mathematical definition of diastolic heart failure.
Another parameter to assess diastolic function is the , which is the ratio of mitral peak velocity of early filling (E) to early diastolic mitral annular velocity (E'). Diastolic dysfunction is assumed when the E/E' ratio exceed 15.
The criteria to diagnose a right bundle branch block on the electrocardiogram:
- The heart rhythm must originate above the ventricles (i.e. sinoatrial node, atria or atrioventricular node) to activate the conduction system at the correct point.
- The QRS duration must be more than 100 ms (incomplete block) or more than 120 ms (complete block)
- There should be a terminal R wave in lead V1 (e.g. R, rR', rsR', rSR' or qR)
- There should be a slurred S wave in leads I and V6.
The T wave should be deflected opposite the terminal deflection of the QRS complex. This is known as appropriate T wave discordance with bundle branch block. A concordant T wave may suggest ischemia or myocardial infarction.
A mnemonic to distinguish between ECG signatures of left bundle branch block (LBBB) and right, is WiLLiaM MaRRoW; i.e., with LBBB, there is a W in lead V1 and an M in lead V6, whereas, with RBBB, there is an M in V1 and a W in V6.
As an overall medical condition PVCs are normally not very harmful to patients that experience them, but frequent PVCs may put patients at increased risk of developing arrhythmias or cardiomyopathy, which can greatly impact the functioning of the heart over the span of that patient's life. On a more serious and severe scale, frequent PVCs can accompany underlying heart disease and lead to chaotic, dangerous heart rhythms and possibly sudden cardiac death.
Asymptomatic patients that do not have heart disease have long-term prognoses very similar to the general population, but asymptomatic patients that have ejection fractions greater than 40% have a 3.5% incidence of sustained ventricular tachycardia or cardiac arrest. One drawback comes from emerging data that suggests very frequent ventricular ectopy may be associated with cardiomyopathy through a mechanism thought to be similar to that of chronic right ventricular pacing associated cardiomyopathy. Patients that have underlying chronic structural heart disease and complex ectopy, mortality is significantly increased.
In meta-analysis of 11 studies, people with frequent PVC (≥1 time during a standard electrocardiographic recording or ≥30 times over a 1-hour recording) had risk of cardiac death 2 times higher than persons without frequent PVC. Although most studies made attempts to exclude high-risk subjects, such as those with histories of cardiovascular disease, they did not test participants for underlying structural heart disease.
In a study of 239 people with frequent PVCs (>1000 beats/day) and without structural heart disease (i.e. in the presence of normal heart function) there were no serious cardiac events through 5.6 years on average, but there was correlation between PVC prevalence and decrease of ejection fraction and increase of left ventricular diastolic dimension. In this study absence of heart of disease was excluded by echocardiography, cardiac magnetic resonance imaging in 63 persons and Holter monitoring.
Another study has suggested that in the absence of structural heart disease even frequent (> 60/h or 1/min) and complex PVCs are associated with a benign prognosis. It was study of 70 people followed by 6.5 years on average. Healthy status was confirmed by extensive noninvasive cardiologic examination, although cardiac catheterization of a subgroup disclosed serious coronary artery disease in 19%. Overall survival was better than expected.
On the other hand, the Framingham Heart Study reported that PVCs in apparently healthy people were associated with a twofold increase in the risk of all-cause mortality, myocardial infarction and cardiac death. In men with coronary heart disease and in women with or without coronary heart disease, complex or frequent arrhythmias were not associated with an increased risk. The at-risk people might have subclinical coronary disease. These Framingham results have been criticised for the lack of rigorous measures to exclude the potential confounder of underlying heart disease.
In the ARIC study of 14,783 people followed for 15 to 17 years those with detected PVC during 2 minute ECG, and without hypertension or diabetes on the beginning, had risk of stroke increased by 109%. Hypertension or diabetes, both risk factors for stroke, did not change significantly risk of stroke for people with PVC. It is possible that PVCs identified those at risk of stroke with blood pressure and impaired glucose tolerance on a continuum of risk below conventional diagnostic thresholds for hypertension and diabetes. Those in ARIC study with any PVC had risk of heart failure increased by 63% and were >2 times as likely to die due to coronary heart disease (CHD). Risk was also higher for people with or without baseline CHD.
In the Niigata study of 63,386 people with 10-year follow-up period those with PVC during a 10-second recording had risk of atrial fibrillation increased nearly 3 times independently from risk factors: age, male sex, body mass index, hypertension, systolic and diastolic blood pressure, and diabetes.
Reducing frequent PVC (>20%) by antiarrhythmic drugs or by catheter ablation significantly improves heart performance.
Recent studies have shown that those subjects who have an extremely high occurrence of PVCs (several thousand a day) can develop dilated cardiomyopathy. In these cases, if the PVCs are reduced or removed (for example, via ablation therapy) the cardiomyopathy usually regresses.
Also, PVCs can permanently cease without any treatment, in a material percentage of cases.
The prognosis for TIC after treatment of the underlying tachyarrhythmia is generally good. Studies show that left ventricular function often improves within 1 month of treatment of the tachyarrhythmia, and normalization of the left ventricular ejection fraction occurs in the majority of patients by 3 to 4 months. In some patients however, recovery of this function can take greater than 1 year or be incomplete. In addition, despite improvement in the left ventricular ejection fraction, studies have demonstrated that patients with prior TIC continue to demonstrate signs of negative cardiac remodeling including increased left ventricular end-systolic dimension, end-systolic volume, and end-diastolic volume. Additionally, recurrence of the tachyarrhythmia in patients with a history of TIC has been associated with a rapid decline in left ventricular ejection fraction and more severe cardiomyopathy that their prior presentation, which may be a result of the negative cardiac remodeling. There have also been cases of sudden death in patients with a history of TIC, which may be associated with worse baseline left ventricular dysfunction. Given these risks, routine monitoring with clinic visits, ECG, and echocardiography is recommended.
The hemodynamic sequelae of AI are dependent on the rate of onset of AI. Therefore, can be acute or chronic as follows:
- Acute aortic insufficiency In acute AI, as may be seen with acute perforation of the aortic valve due to endocarditis, there will be a sudden increase in the volume of blood in the left ventricle. The ventricle is unable to deal with the sudden change in volume. The filling pressure of the left ventricle will increase. This causes pressure in the left atrium to rise, and the individual will develop pulmonary edema. Severe acute aortic insufficiency is considered a medical emergency. There is a high mortality rate if the individual does not undergo immediate surgery for aortic valve replacement.
- Chronic aortic insufficiency If the individual survives the initial hemodynamic derailment that acute AI presents as, the left ventricle adapts by eccentric hypertrophy and dilatation of the left ventricle, and the volume overload is compensated for. The left ventricular filling pressures will revert to normal and the individual will no longer have overt heart failure. In this compensated phase, the individual may be totally asymptomatic and may have normal exercise tolerance. Eventually (typically after a latency period) the left ventricle will become decompensated, and filling pressures will increase.Some individuals enter this decompensated phase asymptomatically, treatment for AI involves aortic valve replacement prior to this decompensation phase.
Treatment of restrictive cardiomyopathy should focus on management of causative conditions (for example, using corticosteroids if the cause is sarcoidosis), and slowing the progression of cardiomyopathy. Salt-restriction, diuretics, angiotensin-converting enzyme inhibitors, and anticoagulation may be indicated for managing restrictive cardiomyopathy.
Calcium channel blockers are generally contraindicated due to their negative inotropic effect, particularly in cardiomyopathy caused by amyloidosis. Digoxin, calcium channel blocking drugs and beta-adrenergic blocking agents provide little benefit, except in the subgroup of restrictive cardiomyopathy with atrial fibrillation. Vasodilators are also typically ineffective because systolic function is usually preserved in cases of RCM.
Heart failure resulting from restrictive cardiomyopathy will usually eventually have to be treated by cardiac transplantation or left ventricular assist device.
Remodeling of the heart is evaluated by performing an echocardiogram. The size and function of the atria and ventricles can be characterized using this test.
Echocardiography and Tissue Doppler echocardiography are both needed to fully diagnose the different types of ventricular dyssynchrony.
In the diagnosis of tricuspid insufficiency a chest x-ray will demonstrate right heart enlargement. An echocardiogram will assess the chambers of the heart, as well as, right ventricular pressure. Cardiac magnetic resonance may also be used as a diagnostic tool, and finally, cardiac catheterization may determine the extent of the regurgitation.
The physical examination of an individual with aortic insufficiency involves auscultation of the heart to listen for the murmur of aortic insufficiency and the S3 heart sound (S3 gallop correlates with development of LV dysfunction). The murmur of chronic aortic insufficiency is typically described as early diastolic and decrescendo, which is best heard in the third left intercostal space and may radiate along the left sternal border.
If there is increased stroke volume of the left ventricle due to volume overload, an ejection systolic 'flow' murmur may also be present when auscultating the same aortic area. Unless there is concomitant aortic valve stenosis, the murmur should not start with an ejection click.There may also be an Austin Flint murmur, a soft mid-diastolic rumble heard at the apical area, it appears when regurgitant jet from the severe aortic insufficiency renders partial closure of the anterior mitral leaflet.Peripheral physical signs of aortic insufficiency are related to the high pulse pressure and the rapid decrease in blood pressure during diastole due to blood returning to the heart from the aorta through the incompetent aortic valve, although the usefulness of some of the eponymous signs has been questioned: Phonocardiograms detect AI by having electric voltage mimic the sounds the heart makes.
"Characteristics"- indicative of aortic regurgitation are as follow:
Another method of measuring the severity of mitral stenosis is the simultaneous left and right heart chamber catheterization. The right heart catheterization (commonly known as Swan-Ganz catheterization) gives the physician the mean pulmonary capillary wedge pressure, which is a reflection of the left atrial pressure. The left heart catheterization, on the other hand, gives the pressure in the left ventricle. By simultaneously taking these pressures, it is possible to determine the gradient between the left atrium and left ventricle during ventricular diastole, which is a marker for the severity of mitral stenosis. This method of evaluating mitral stenosis tends to overestimate the degree of mitral stenosis, however, because of the time lag in the pressure tracings seen on the right-heart catheterization and the slow Y descent seen on the wedge tracings. If a trans-septal puncture is made during right heart catheterization, however, the pressure gradient can accurately quantify the severity of mitral stenosis.
AVSDs can be detected by cardiac auscultation; they cause atypical murmurs and loud heart tones. Confirmation of findings from cardiac auscultation can be obtained with a cardiac ultrasound (echocardiography - less invasive) and cardiac catheterization (more invasive).
Tentative diagnosis can also be made in utero via fetal echocardiogram. An AVSD diagnosis made before birth is a marker for Down syndrome, although other signs and further testing are required before any definitive confirmation of either can be made.
PVCs are usually diagnosed after the patient has described "skipped beats", pauses or palpitations. Typically the palpitations felt by PVC patients are very irregular and less sustained than patients with other types of arrhythmia. They are likely to have "flip flopping" sensations where it feels like the heart is flipping over or pounding due to there being a pause after the premature contraction and then a powerful contraction after the pause. There is a possibility that they might feel a ‘fluttering’ in their chest or a pounding in their neck but these two types of palpitations aren't very common in PVC patients.
A physical examination should be conducted after a full history has been taken. This is useful in determining any possible heart defects that might be causing the palpitations. For example, some cases of premature ventricular contraction have a mitral-valve prolapse which can be determined through the physical examination.
The next step in diagnosis is a 12 lead ECG which can be performed in the doctors’ office over a short period of time; however this is often non-conclusive in diagnosis because it is not very sensitive and there is only a small chance of a premature ventricular contraction occurring in the short period of time. Holter monitoring is a far better method for diagnosis as it is continuous recording of the heart’s rhythm over a period of 24 hours, or event monitoring which records noncontinuously for 30 days or indefinitely. This increases the likelihood of a premature ventricular contraction occurring during the recording period and is therefore more useful in diagnosis. Another method of detection of PVCs is a portable electrocardiogram device known as an event recorder that can be carried around for home monitoring of the heart's activity. Both the Holter monitor and the event recorder can help to identify the pattern of a PVC. The significance of a patient's PVCs can be monitored and diagnosed through exercise stress electrocardiogram. If the premature beats go away during the exercise test then they are considered to be harmless, but if the exercise provokes the extra beats than it may indicate higher risk of serious heart rhythm problems.
When looking at an electrocardiograph, premature ventricular contractions are easily spotted and therefore a definitive diagnosis can be made. The QRS and T waves look very different from normal readings. The spacing between the PVC and the preceding QRS wave is a lot shorter than usual and the time between the PVC and the following QRS is a lot longer. However, the time between the preceding and ing QRS waves stays the same as normal due to the compensatory pause.
PVCs can be distinguished from premature atrial contractions because the compensatory pause is longer following premature ventricular contractions.
There are four different named patterns of regularly occurring PVCs. Depending whether there are 1, 2, or 3 normal beats between each PVC, the rhythm is called bigeminy, trigeminy, or quadrigeminy. Unifocal PVCs are triggered from a single site in the ventricle, causing the peaks on the ECG to look the same. Multifocal PVCs arise when more than one site in the ventricles initiate depolarization, causing each peak on the ECG to have a different shape. If 3 or more PVCs occur in a row it may be called ventricular tachycardia.
Chest X-ray may also assist in diagnosis, showing left atrial enlargement.
Electrocardiography may show "P mitrale", that is, broad, notched P waves in several or many leads with a prominent late negative component to the P wave in lead V, and may also be seen in mitral regurgitation, and, potentially, any cause of overload of the left atrium. Thus, "P-sinistrocardiale" may be a more appropriate term.
Recent studies suggest that cardiac resynchronization therapy can reduce the incidence of ventricular dyssynchrony and thus increase cardiac efficiency.
Cardiac chamber catheterization provides a definitive diagnosis, indicating severe stenosis in valve area of <1.0 cm (normally about 3 cm). It can directly measure the pressure on both sides of the aortic valve. The pressure gradient may be used as a decision point for treatment. It is useful in symptomatic people before surgery. The standard for diagnosis of aortic stenosis is noninvasive testing with echocardiography. Cardiac catheterization is reserved for cases in which there is discrepancy between the clinical picture and non-invasive testing, due to risks inherent to crossing the aortic valve such as stroke.