Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Multiview videofluoroscopy is a radiographic technique, mostly to demonstrate the lateral and posterior wall of the pharynx. This is a questionable technique considering these children undergo radiographic examinations frequently. Also known is that children are more sensitive to radiographic examinations than adults. Most of the time barium is used in multiview videofluoroscopy. Besides the fact that videofluoroscopy provides an overview of the lateral and posterior walls of the pharynx, this technique also provides information about the length and movement of the soft palate, the posterior and the lateral walls.
A limitation of multiview videofluoroscopy is the possibility of misinterpreting certain shapes of gaps and anatomic structures.
The most frequently used diagnostic tools are videofluoroscopy and nasoendoscopy. Some studies conclude that the first step in the process of diagnosis is videofluoroscopy in combination with nasometry. Other studies show a favour for nasoendoscopy. But in general there is no preference for which tool should be used as a standard. Most studies conclude that it is necessary to make an individual decision on which diagnostic tool should be used.
A relatively new approach in the diagnosis is magnetic resonance imaging (MRI), which is noninvasive. MRI uses the property of nuclear magnetic resonance to image nuclei of atoms inside the body. MRI is non-radiographic and therefore can be repeated more often in short periods of time. In addition, different studies show that the MRI is better as a diagnostic tool than videofluoroscopy for visualizing the anatomy of the velopharynx.
On the contrary there are still a few limitations of the MRI. Firstly, artifacts can be shown on the images when the patient moves while imaging. Also artifacts will also be shown if the patient has orthodontic appliances. Secondly, the MRI is limited in children who are claustrophobic.
Furthermore, in the MRI scanner movement of the sphincter leads to artifacts on the images. Therefore, nasoendoscopy is still needed for information about the sphincter’s movement. Finally, the MRI is a more expensive diagnostic tool than the combination of nasoendoscopy and videofluoroscopy.
Because of these limits, MRI is currently not widely used. Overall, MRI is used for a “bird's eye view” of the child in the planning of the operation, but not in the progress of diagnosis.
In cases of muscle weakness or cleft palate, special exercises can help to strengthen the soft palate muscles with the ultimate aim of decreasing airflow through the nose and thereby increasing intelligibility. Intelligibility requires the ability to close the nasal cavity, as all English sounds, except "m", "n", and "ng", have airflow only through the mouth. Normally, by age three, a child can raise the muscles of the soft palate to close to nasal cavity.
Without the use of a technological aid, nasal emission is sometimes judged by listening for any turbulence that may be produced by the nasal airflow, as when there is a small velopharyngeal opening and there is some degree of mucous in the opening. More directly, methods recommended include looking for the fogging of a mirror held near the nares or listening through a tube, the other end of which is held in or near a nares opening.
There have been many attempts to use technological augmentation more than a mirror or tube to aid the speech pathologist or provide meaningful feedback to the person attempting to correct their hypernasality. Among the more successful of these attempts, the incompleteness of velopharyngeal closure during vowels and sonorants that causes nasal resonance can be estimated and displayed for evaluation or biofeedback in speech training through the nasalance of the voice, with nasalance defined as a ratio of acoustic energy at the nostrils to that at the mouth, with some form of acoustic separation present between the mouth and nose. In the nasalance measurement system sold by WEVOSYS, the acoustic separation is provided by a mask-tube system, nasalance measurement system sold by Kay-Pentax, the acoustic separation is provided by a solid flat partition held against the upper lip, while in the system sold by Glottal Enterprises the acoustic separation can be by either a solid flat partition or a two-chamber mask.
However, devices for measuring nasalance do not measure nasal emission during pressure consonants. Because of this, a means for measuring the degree of velopharyngeal closure in consonants is also needed. A commercially available device for making such measurements is the Perci-Sar system from Microtronics. The Nasality Visualization System from Glottal Enterprises allows both the measurement of Nasal Emission and Nasalance. In the presence of a cleft palate, either of these systems can be helpful in evaluating the need for an appliance or surgical intervention to close the cleft or the success of an appliance or a surgical attempt to close the cleft.
A common method to treat Velopharyngeal insufficiency is pharyngeal flap surgery, where tissue from the back of the mouth is used to close part of the gap. Other ways of treating velopharyngeal insufficiency is by placing a posterior nasopharyngeal wall implant (commonly cartilage or collagen) or type of soft palate lengthening procedure (i.e. VY palatoplasty).
Hypernasality is generally segmented into so-called 'resonance' effects in vowels and some voiced or sonorant consonants and the effects of excess nasal airflow during those consonants requiring a buildup of oral air pressure, such as stop consonants (as /p/) or sibilants (as /s/). The latter nasal airflow problem is termed 'nasal emission', and acts to prevent the buildup of air pressure and thus prevent the normal production of the consonant. In testing for resonance effects without the aid of technology, speech pathologists are asked to rate the speech by listening to a recorded sentence or paragraph, though there is much variability in such subjective ratings, for at least two reasons. First, the acoustic effect of a given velopharyngeal opening varies greatly depending on the degree of occlusion of the nasal passageways. (This is the reason why a stuffy nose from an allergy or cold will sound more nasal than when the nose is clear.) Secondly, for many persons with hypernasal speech, especially hearing impaired, there are also mispronunciations of the articulation of the vowels. It is extremely difficult to separate the acoustic effects of hypernasality from the acoustic effects of mispronounced vowels (examples). Of course, in speech training of the hearing impaired, there is little possibility of making nasality judgments aurally, and holding a finger to the side of the nose, to feel voice frequency vibration, is sometimes recommended.
While cleft is the most common cause of VPI, other significant etiologies exist. These other causes are outlined in the chart below:
Traditionally, the diagnosis is made at the time of birth by physical examination. Recent advances in prenatal diagnosis have allowed obstetricians to diagnose facial clefts in utero with ultrasonography.
Clefts can also affect other parts of the face, such as the eyes, ears, nose, cheeks, and forehead. In 1976, Paul Tessier described fifteen lines of cleft. Most of these craniofacial clefts are even rarer and are frequently described as Tessier clefts using the numerical locator devised by Tessier.
Note that each individual patient's schedule is treated on a case-by-case basis and can vary per hospital. The table below shows a common sample treatment schedule. The colored squares indicate the average timeframe in which the indicated procedure occurs. In some cases this is usually one procedure (for example lip repair) in other cases this is an ongoing therapy (for example speech therapy).
Individuals with Nager syndrome typically have the malformations of the auricle, external auditory canal, and middle ear, including the ossicles. These malformations were found in 80% of individuals with Nager syndrome. Inner ear malformations, however, are not typically seen in this population. Middle ear disease is common among individuals with Nager syndrome. Chronic otitis media and Eustachian tube deformity can result in conductive hearing loss. For this reason, early detection and treatment for middle ear disease is crucial in this population. Sensorineural hearing loss is not a typical characteristic of Nager syndrome; however, a subset of individuals present with a mixed hearing loss, due to a progressive sensorineural component combined with the typical conductive hearing loss (Herrman "et al.", 2005).
Hearing loss with craniofacial syndromes is a common occurrence. Many of these multianomaly disorders involve structural malformations of the outer or middle ear, making a significant hearing loss highly likely.
In patients who are at high likelihood of having OSA, a randomized controlled trial found that home oximetry (a non-invasive method of monitoring blood oxygenation) may be adequate and easier to obtain than formal polysomnography. High probability patients were identified by an Epworth Sleepiness Scale (ESS) score of 10 or greater and a Sleep Apnea Clinical Score (SACS) of 15 or greater. Home oximetry, however, does not measure apneic events or respiratory event-related arousals and thus does not produce an AHI value.
Although LFS is usually suspected when intellectual disability and marfanoid habitus are observed together in a patient, the diagnosis of LFS can be confirmed by the presence of the p.N1007S missense mutation in the "MED12" gene.
History and examination by a physician with characteristic signs and symptoms are sufficient in many cases in ruling out systemic causes of venous hypertension such as hypervolemia and heart failure. An ultrasound (usually a lower limbs venous ultrasonography) can detect venous obstruction or valvular incompetence as the cause, and is used for planning venous ablation procedures, but it is not necessary in suspected venous insufficiency where surgical intervention is not indicated.
Thoracic insufficiency syndrome is the inability of the thorax to support normal respiration. It is frequently associated with chest and/or spinal abnormalities. Treatment options are limited, but include supportive pulmonary care and surgical options (thoracoplasty and/or implantation of vertical expandable prosthetic titanium rib (VEPTR) devices).
In the differential diagnosis of LFS, another disorder that exhibits some features and symptoms of LFS and is also associated with a missense mutation of "MED12" is Opitz-Kaveggia syndrome (FGS). Common features shared by both LFS and FGS include X-linked intellectual disability, hyperactivity, macrocephaly, corpus callosum agenesis and hypotonia. Notable features of FGS that have not been reported with LFS include excessive talkativness, consistent strength in socialization skills, imperforate anus (occlusion of the anus) and ocular hypertelorism (extremely wide-set eyes).
Whereas LFS is associated with missense mutation p.N1007S, FGS is associated with missense mutation p.R961W. As both disorders originate from an identical type of mutation in the same gene, while exhibiting similar, yet distinct characteristics; LFS and FGS are considered to be allelic. In the context of "MED12", this suggests that the phenotype of each disorder is related to the way in which their respective mutations alter the "MED12" sequence and its function.
Diagnosis of 22q11.2 deletion syndrome can be difficult due to the number of potential symptoms and the variation in phenotypes between individuals. It is suspected in patients with one or more signs of the deletion. In these cases a diagnosis of 22q11.2DS is confirmed by observation of a deletion of part of the long arm (q) of chromosome 22, region 1, band 1, sub-band 2. Genetic analysis is normally performed using fluorescence "in situ" hybridization (FISH), which is able to detect microdeletions that standard karyotyping (e.g. G-banding) miss. Newer methods of analysis include Multiplex ligation-dependent probe amplification assay (MLPA) and quantitative polymerase chain reaction (qPCR), both of which can detect atypical deletions in 22q11.2 that are not detected by FISH. qPCR analysis is also quicker than FISH, which can have a turn around of 3 to 14 days.
A 2008 study of a new high-definition MLPA probe developed to detect copy number variation at 37 points on chromosome 22q found it to be as reliable as FISH in detecting normal 22q11.2 deletions. It was also able to detect smaller atypical deletions that are easily missed using FISH. These factors, along with the lower expense and easier testing mean that this MLPA probe could replace FISH in clinical testing.
Genetic testing using BACs-on-Beads has been successful in detecting deletions consistent with 22q11.2DS during prenatal testing. Array-comparative genomic hybridization (array-CGH) uses a large number of probes embossed in a chip to screen the entire genome for deletions or duplications. It can be used in post and pre-natal diagnosis of 22q11.2.
Fewer than 5% of individuals with clinical symptoms of the 22q11.2 deletion syndrome have normal routine cytogenetic studies and negative FISH testing. In these cases, atypical deletions are the cause. Some cases of 22q11.2 deletion syndrome have defects in other chromosomes, notably a deletion in chromosome region 10p14.
Initially, the clinical presentation of SDS may appear similar to cystic fibrosis. However, CF can be excluded with a normal chloride in sweat test but faecal elastase as a marker of pancreatic function will be reduced. The variation, intermittent nature, and potential for long-term improvement of some clinical features make this syndrome difficult to diagnose. SDS may present with either malabsorption, or hematological problems. Rarely, SDS may present with skeletal defects, including severe rib cage abnormalities that lead to difficulty in breathing. Diagnosis is generally based on evidence of exocrine pancreatic dysfunction and neutropenia. Skeletal abnormalities and short stature are characteristics that can be used to support the diagnosis. The gene responsible for the disease has been identified and genetic testing is now available. Though useful in diagnostics, a genetic test does not surmount the need for careful clinical assessment and monitoring of all patients.
While there is no cure for JBS, treatment and management of specific symptoms and features of the disorder are applied and can often be successful. Variability in the severity of JBS on a case-by-case basis determines the requirements and effectiveness of any treatment selected.
Pancreatic insufficiency and malabsorption can be managed with pancreatic enzyme replacement therapy, such as pancrelipase supplementation and other related methods.
Craniofacial and skeletal deformities may require surgical correction, using techniques including bone grafts and osteotomy procedures. Sensorineural hearing loss can be managed with the use of hearing aids and educational services designated for the hearing impaired.
Special education, specialized counseling methods and occupational therapy designed for those with mental retardation have proven to be effective, for both the patient and their families. This, too, is carefully considered for JBS patients.
The most widely used current therapeutic intervention is "positive airway pressure" whereby a breathing machine pumps a controlled stream of air through a mask worn over the nose, mouth, or both. The additional pressure holds open the relaxed muscles. There are several variants:
- Continuous positive airway pressure (CPAP) is effective for both moderate and severe disease. It is the most common treatment for obstructive sleep apnea.
- Variable positive airway pressure (VPAP) (also known as bilevel (BiPAP or BPAP)) uses an electronic circuit to monitor the patient's breathing, and provides two different pressures, a higher one during inhalation and a lower pressure during exhalation. This system is more expensive, and is sometimes used with patients who have other coexisting respiratory problems and/or who find breathing out against an increased pressure to be uncomfortable or disruptive to their sleep.
- Nasal EPAP, which is a bandage-like device placed over the nostrils that utilizes a person's own breathing to create positive airway pressure to prevent obstructed breathing.
- Automatic positive airway pressure, or "automatic positive airway pressure", also known as "Auto CPAP", incorporates pressure sensors and monitors the person's breathing.
- A 5% reduction in weight among those with moderate to severe OSA may decrease symptoms similarly to CPAP.
"Oral appliances" or splints are often preferred but may not be as effective as CPAP. This device is a mouthguard similar to those used in sports to protect the teeth. It is designed to hold the lower jaw slightly down and forward relative to the natural, relaxed position. This position holds the tongue farther away from the back of the airway and may be enough to relieve apnea or improve breathing.
Many people benefit from sleeping at a "30-degree elevation" of the upper body or higher, as if in a recliner. Doing so helps prevent the gravitational collapse of the airway. Sleeping on a side as opposed to sleeping on the back is also recommended.
Some studies have suggested that "playing a wind instrument": may reduce snoring and apnea incidents. This may be especially true of double reed instruments.
In treating pulmonary insufficiency, it should be determined if pulmonary hypertension is causing the problem to therefore begin the most appropriate therapy as soon as possible (primary pulmonary hypertension or secondary pulmonary hypertension due to thromboembolism). Furthermore, pulmonary insufficiency is generally treated by addressing the underlying condition, in certain cases, the pulmonary valve may be surgically replaced.
Venous Insufficiency Conservative, Hemodynamic and Ambulatory treatment" is an ultrasound guided, minimally invasive surgery strategic for the treatment of varicose veins, performed under local anaesthetic. CHIVA is an abbreviation from the French "Cure Conservatrice et Hemodynamique de l'Insufficience Veineuse en Ambulatoire".
Exophoria is particularly common in infancy and childhood, and increases with age.
Diagnosis of convergence insufficiency is made by an eye care professional skilled in binocular vision dysfunctions to rule out any organic disease. Convergence insufficiency characterized by one or more of the following diagnostic findings: Patient symptoms, High exophoria at near, reduced accommodative convergence/accommodation ratio, receded near point of convergence, low fusional vergence ranges and/or facility. Some patients with convergence insufficiency have concurrent accommodative insufficiency—accommodative amplitudes should therefore also be measured in symptomatic patients.
In the diagnosis of tricuspid insufficiency a chest x-ray will demonstrate right heart enlargement. An echocardiogram will assess the chambers of the heart, as well as, right ventricular pressure. Cardiac magnetic resonance may also be used as a diagnostic tool, and finally, cardiac catheterization may determine the extent of the regurgitation.
The prognosis of tricuspid insufficiency is less favorable for males than females. Furthermore, increased tricuspid insufficiency (regurgitation) severity is an indication of a poorer prognosis according to Nath, et al. It is also important to note that since tricuspid insufficiency most often arises from left heart failure or pulmonary hypertension, the person's prognosis is usually dictated by the prognosis of the latter conditions and not by the tricuspid insufficiency "per se".