Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Only specialized laboratories can adequately diagnose "Babesia" infection in humans, so "Babesia" infections are considered highly under-reported. It develops in patients who live in or travel to an endemic area or receive a contaminated blood transfusion within the preceding 9 weeks, so this aspect of the medical history is vital. Babesiosis may be suspected when a person with such an exposure history develops persistent fevers and hemolytic anemia. The definitive diagnostic test is the identification of parasites on a Giemsa-stained thin-film blood smear.
So-called "Maltese cross formations" on the blood film are diagnostic (pathognomonic) of babesiosis, since they are not seen in malaria, the primary differential diagnosis. Careful examination of multiple smears may be necessary, since "Babesia" may infect less than 1% of circulating red blood cells, thus be easily overlooked.
Serologic testing for antibodies against "Babesia" (both IgG and IgM) can detect low-level infection in cases with a high clinical suspicion, but negative blood film examinations. Serology is also useful for differentiating babesiosis from malaria in cases where people are at risk for both infections. Since detectable antibody responses require about a week after infection to develop, serologic testing may be falsely negative early in the disease course.
A polymerase chain reaction (PCR) test has been developed for the detection of "Babesia" from the peripheral blood. PCR may be at least as sensitive and specific as blood-film examination in diagnosing babesiosis, though it is also significantly more expensive. Most often, PCR testing is used in conjunction with blood film examination and possibly serologic testing.
Other laboratory findings include decreased numbers of red blood cells and platelets on complete blood count.
In animals, babesiosis is suspected by observation of clinical signs (hemoglobinuria and anemia) in animals in endemic areas. Diagnosis is confirmed by observation of merozoites on thin film blood smear examined at maximum magnification under oil using Romonovski stains (methylene blue and eosin). This is a routine part of the veterinary examination of dogs and ruminants in regions where babesiosis is endemic.
"Babesia canis" and "B. bigemina" are "large "Babesia" species" that form paired merozoites in the erythrocytes, commonly described as resembling "two pears hanging together", rather than the "Maltese cross" of the "small "Babesia" species". Their merozoites are around twice the size of small ones.
Cerebral babesiosis is suspected "in vivo" when neurological signs (often severe) are seen in cattle that are positive for "B. bovis" on blood smear, but this has yet to be proven scientifically. Outspoken red discoloration of the grey matter "post mortem" further strengthens suspicion of cerebral babesiosis. Diagnosis is confirmed "post mortem" by observation of "Babesia"-infected erythrocytes sludged in the cerebral cortical capillaries in a brain smear.
Presumptive diagnosis is made by characteristic clinical signs, post mortem lesions, and presence of competent vectors. Laboratory confirmation is by viral isolation, with such techniques as quantitative PCR for detecting viral RNA, antigen capture (ELISA), and immunofluorescence of infected tissues. Serological tests are only useful for detecting recovered animals, as sick animals die before they are able to mount effective immune responses.
A Zika virus infection might be suspected if symptoms are present and an individual has traveled to an area with known Zika virus transmission. Zika virus can only be confirmed by a laboratory test of body fluids, such as urine or saliva, or by blood test.
Laboratory blood tests can identify evidence of chikungunya or other similar viruses such as dengue and Zika. Blood test may confirm the presence of IgM and IgG anti-chikungunya antibodies. IgM antibodies are highest 3 to 5 weeks after the beginning of symptoms and will continue be present for about 2 months.
Neuroimaging is controversial in whether it provides specific patterns unique to neuroborreliosis, but may aid in differential diagnosis and in understanding the pathophysiology of the disease. Though controversial, some evidence shows certain neuroimaging tests can provide data that are helpful in the diagnosis of a patient. Magnetic resonance imaging (MRI) and single-photon emission computed tomography (SPECT) are two of the tests that can identify abnormalities in the brain of a patient affected with this disease. Neuroimaging findings in an MRI include lesions in the periventricular white matter, as well as enlarged ventricles and cortical atrophy. The findings are considered somewhat unexceptional because the lesions have been found to be reversible following antibiotic treatment. Images produced using SPECT show numerous areas where an insufficient amount of blood is being delivered the cortex and subcortical white matter. However, SPECT images are known to be nonspecific because they show a heterogeneous pattern in the imaging. The abnormalities seen in the SPECT images are very similar to those seen in people with cerebral vacuities and Creutzfeldt–Jakob disease, which makes them questionable.
Several forms of laboratory testing for Lyme disease are available, some of which have not been adequately validated. The most widely used tests are serologies, which measure levels of specific antibodies in a patient's blood. These tests may be negative in early infection as the body may not have produced a significant quantity of antibodies, but they are considered a reliable aid in the diagnosis of later stages of Lyme disease. Serologic tests for Lyme disease are of limited use in people lacking objective signs of Lyme disease because of false positive results and cost.
The serological laboratory tests most widely available and employed are the Western blot and ELISA. A two-tiered protocol is recommended by the Centers for Disease Control and Prevention: the sensitive ELISA test is performed first, and if it is positive or equivocal, then the more specific Western blot is run. The reliability of testing in diagnosis remains controversial. Studies show the Western blot IgM has a specificity of 94–96% for people with clinical symptoms of early Lyme disease. The initial ELISA test has a sensitivity of about 70%, and in two-tiered testing, the overall sensitivity is only 64%, although this rises to 100% in the subset of people with disseminated symptoms, such as arthritis.
Erroneous test results have been widely reported in both early and late stages of the disease, and can be caused by several factors, including antibody cross-reactions from other infections, including Epstein–Barr virus and cytomegalovirus, as well as herpes simplex virus. The overall rate of false positives is low, only about 1 to 3%, in comparison to a false-negative rate of up to 36% in the early stages of infection using two-tiered testing.
Polymerase chain reaction (PCR) tests for Lyme disease have also been developed to detect the genetic material (DNA) of the Lyme disease spirochete. PCR tests are susceptible to false positive results from poor laboratory technique. Even when properly performed, PCR often shows false negative results with blood and cerebrospinal fluid specimens. Hence, PCR is not widely performed for diagnosis of Lyme disease, but it may have a role in the diagnosis of Lyme arthritis because it is a highly sensitive way of detecting "ospA" DNA in synovial fluid.
Culture or PCR are the current means for detecting the presence of the organism, as serologic studies only test for antibodies of "Borrelia". OspA antigens, shedded by live Borrelia bacteria into urine, are a promising technique being studied. The use of nanotrap particles for their detection is being looked at and the OspA has been linked to active symptoms of Lyme. High titers of either immunoglobulin G (IgG) or immunoglobulin M (IgM) antibodies to "Borrelia" antigens indicate disease, but lower titers can be misleading, because the IgM antibodies may remain after the initial infection, and IgG antibodies may remain for years.
Western blot, ELISA, and PCR can be performed by either blood test via venipuncture or cerebrospinal fluid (CSF) via lumbar puncture. Though lumbar puncture is more definitive of diagnosis, antigen capture in the CSF is much more elusive; reportedly, CSF yields positive results in only 10–30% of affected individuals cultured. The diagnosis of neurologic infection by "Borrelia" should not be excluded solely on the basis of normal routine CSF or negative CSF antibody analyses.
New techniques for clinical testing of "Borrelia" infection have been developed, such as LTT-MELISA, although the results of studies are contradictory. The first peer reviewed study assessing the diagnostic sensitivity and specificity of the test was presented in 2012 and demonstrated potential for LTT to become a supportive diagnostic tool. In 2014, research of LTT-MELISA concluded that it is "sensible" to include the LTT test in the diagnostic protocol for putative European-acquired Lyme borreliosis infections. Other diagnostic techniques, such as focus floating microscopy, are under investigation. New research indicates chemokine CXCL13 may also be a possible marker for neuroborreliosis.
Some laboratories offer Lyme disease testing using assays whose accuracy and clinical usefulness have not been adequately established. These tests include urine antigen tests, PCR tests on urine, immunofluorescent staining for cell-wall-deficient forms of "B. burgdorferi", and lymphocyte transformation tests. The CDC does not recommend these tests, and stated their use is "of great concern and is strongly discouraged".
The CDC recommends screening some pregnant women even if they do not have symptoms of infection. Pregnant women who have traveled to affected areas should be tested between two and twelve weeks after their return from travel. Due to the difficulties with ordering and interpreting tests for Zika virus, the CDC also recommends that healthcare providers contact their local health department for assistance. For women living in affected areas, the CDC has recommended testing at the first prenatal visit with a doctor as well as in the mid-second trimester, though this may be adjusted based on local resources and the local burden of Zika virus. Additional testing should be done if there are any signs of Zika virus disease. Women with positive test results for Zika virus infection should have their fetus monitored by ultrasound every three to four weeks to monitor fetal anatomy and growth.
In general, specific laboratory tests are not available to rapidly diagnose tick-borne diseases. Due to their seriousness, antibiotic treatment is often justified based on clinical presentation alone.
For infants with suspected congenital Zika virus disease, the CDC recommends testing with both serologic and molecular assays such as RT-PCR, IgM ELISA and plaque reduction neutralization test (PRNT). RT-PCR of the infants serum and urine should be performed in the first two days of life. Newborns with a mother who was potentially exposed and who have positive blood tests, microcephaly or intracranial calcifications should have further testing including a thorough physical investigation for neurologic abnormalities, dysmorphic features, splenomegaly, hepatomegaly, and rash or other skin lesions. Other recommended tests are cranial ultrasound, hearing evaluation, and eye examination. Testing should be done for any abnormalities encountered as well as for other congenital infections such as syphilis, toxoplasmosis, rubella, cytomegalovirus infection, lymphocytic choriomeningitis virus infection, and herpes simplex virus. Some tests should be repeated up to 6 months later as there can be delayed effects, particularly with hearing.
Although commercial tests are not readily available, diagnosis can be confirmed by serology-based assays or quantitative PCR by laboratories that have developed assays to perform such identification.
Treatment of asymptomatic carriers should be considered if parasites are still detected after 3 months. In mild-to-moderate babesiosis, the treatment of choice is a combination of atovaquone and azithromycin. This regimen is preferred to clindamycin and quinine because side effects are fewer. The standard course is 7 to 10 days, but this is extended to at least 6 weeks in people with relapsing disease. Even mild cases are recommended to be treated to decrease the chance of inadvertently transmitting the infection by donating blood. In life-threatening cases, exchange transfusion is performed. In this procedure, the infected red blood cells are removed and replaced with uninfected ones.
Imizol is a drug used for treatment of babesiosis in dogs.
Extracts of the poisonous, bulbous plant "Boophone disticha" are used in the folk medicine of South Africa to treat equine babesiosis. "B. disticha" is a member of the daffodil family Amaryllidaceae and has also been used in preparations employed as arrow poisons, hallucinogens, and in embalming. The plant is rich in alkaloids, some of which display an action similar to that of scopolamine.
Outbreaks of zoonoses have been traced to human interaction with and exposure to animals at fairs, petting zoos, and other settings. In 2005, the Centers for Disease Control and Prevention (CDC) issued an updated list of recommendations for preventing zoonosis transmission in public settings. The recommendations, developed in conjunction with the National Association of State Public Health Veterinarians, include educational responsibilities of venue operators, limiting public and animal contact, and animal care and management.
There is currently no treatment for AHS.
Control of an outbreak in an endemic region involves quarantine, vector control and vaccination. To prevent this disease, the affected horses are usually slaughtered, and the uninfected horses are vaccinated against the virus. Three vaccines currently exist, which include a polyvalent vaccine, a monovalent vaccine, and a monovalent inactivated vaccine. This disease can also be prevented by destroying the insect vector habitats using insecticides.
Previous methods of diagnosis included HI, complement fixation, neutralization tests, and injecting the serum of infected individuals into mice. However, new research has introduced more efficient methods to diagnose KFDV. These methods include: nested RT-PCR, TaqMan-based real-time RT-PCR, and immunoglobin M antibodies detection by ELISA. The two methods involving PCR are able to function by attaching a primer to the NS-5 gene which is highly conserved among the genus to which KFDV belongs. The last method allows for the detections of anti-KFDV antibodies in patients.
For a person or companion animal to acquire a tick-borne disease requires that that individual gets bitten by a tick and that that tick feeds for a sufficient period of time. The feeding time required to transmit pathogens differs for different ticks and different pathogens. Transmission of the bacterium that causes Lyme disease is well understood to require a substantial feeding period.
For an individual to acquire infection, the feeding tick must also be infected. Not all ticks are infected. In most places in the US, 30-50% of deer ticks will be infected with "Borrelia burgdorferi" (the agent of Lyme disease). Other pathogens are much more rare. Ticks can be tested for infection using a highly specific and sensitive qPCR procedure. Several commercial labs provide this service to individuals for a fee. The Laboratory of Medical Zoology (LMZ), a nonprofit lab at the University of Massachusetts, provides a comprehensive TickReport for a variety of human pathogens and makes the data available to the public. Those wishing to know the incidence of tick-borne diseases in their town or state can search the LMZ surveillance database.
Clinically, HGA is essentially indistinguishable from human monocytic ehrlichiosis, the infection caused by "Ehrlichia chaffeensis", and other tick-borne illnesses such as Lyme disease may be suspected. As Ehrlichia serologies can be negative in the acute period, PCR is very useful for diagnosis.
However, simple husbandry changes and practical midge control measures may help break the livestock infection cycle. Housing livestock during times of maximum midge activity (from dusk to dawn) may lead to significantly reduced biting rates. Similarly, protecting livestock shelters with fine mesh netting or coarser material impregnated with insecticide will reduce contact with the midges. The "Culicoides" midges that carry the virus usually breed on animal dung and moist soils, either bare or covered in short grass. Identifying breeding grounds and breaking the breeding cycle will significantly reduce the local midge population. Turning off taps, mending leaks and filling in or draining damp areas will also help dry up breeding sites. Control by trapping midges and removing their breeding grounds may reduce vector numbers. Dung heaps or slurry pits should be covered or removed, and their perimeters (where most larvae are found) regularly scraped.
The diagnosis of relapsing fever can be made on blood smear as evidenced by the presence of spirochetes. Other spirochete illnesses (Lyme disease, syphilis, leptospirosis) do not show spirochetes on blood smear. Although considered the gold standard, this method lacks sensitivity and has been replaced by PCR in many settings.
Infections are treated with antibiotics, particularly doxycycline, and the acute symptoms appear to respond to these drugs.
Pets can transmit a number of diseases. Dogs and cats are routinely vaccinated against rabies. Pets can also transmit ringworm and "Giardia", which are endemic in both animal and human populations. Toxoplasmosis is a common infection of cats; in humans it is a mild disease although it can be dangerous to pregnant women. Dirofilariasis is caused by "Dirofilaria immitis" through mosquitoes infected by mammals like dogs and cats. Cat-scratch disease is caused by "Bartonella henselae" and "Bartonella quintana" from fleas which are endemic in cats. Toxocariasis is infection of humans of any of species of roundworm, including species specific to the dog ("Toxocara canis)" or the cat ("Toxocara cati"). Cryptosporidiosis can be spread to humans from pet lizards, such as the leopard gecko.
Outbreaks in southern Europe have been caused by serotypes 2 and 4, and vaccines are available against these serotypes (ATCvet codes: for sheep, for cattle). However, the disease found in northern Europe (including the UK) in 2006 and 2007 has been caused by serotype 8. Vaccine companies Fort Dodge Animal Health (Wyeth), Merial and Intervet were developing vaccines against serotype 8 (Fort Dodge Animal Health has serotype 4 for sheep, serotype 1 for sheep and cattle and serotype 8 for sheep and cattle) and the associated production facilities. A vaccine for this is now available in the UK, produced by Intervet. Fort Dodge Animal Health has their vaccines available for multiple European Countries (vaccination will start in 2008 in Germany, Belgium, Switzerland, Spain and Italy). However, immunization with any of the available vaccines preclude later serological monitoring of affected cattle populations, a problem which could be resolved using next-generation subunit vaccines currently in development.
In January 2015, Indian researchers launched its vaccine. Named 'Raksha Blu', it will protect the animals against five strains of the ‘bluetongue’ virus prevalent in the country.
No serious long-term effects are known for this disease, but preliminary evidence suggests, if such symptoms do occur, they are less severe than those associated with Lyme disease.
Prevention of sandfly bites, and control of sandflies and their breeding grounds with insecticides are the principal methods for prevention. Mosquito nets may not be sufficient to prevent sandfly bites.
Relapsing fever is easily treated with a one- to two-week-course of antibiotics, and most people improve within 24 hours. Complications and death due to relapsing fever are rare.
Tetracycline-class antibiotics are most effective. These can, however, induce a Jarisch–Herxheimer reaction in over half those treated, producing anxiety, diaphoresis, fever, tachycardia and tachypnea with an initial pressor response followed rapidly by hypotension. Recent studies have shown tumor necrosis factor-alpha may be partly responsible for this reaction.
Biochemical tests used in the identification of infectious agents include the detection of metabolic or enzymatic products characteristic of a particular infectious agent. Since bacteria ferment carbohydrates in patterns characteristic of their genus and species, the detection of fermentation products is commonly used in bacterial identification. Acids, alcohols and gases are usually detected in these tests when bacteria are grown in selective liquid or solid media.
The isolation of enzymes from infected tissue can also provide the basis of a biochemical diagnosis of an infectious disease. For example, humans can make neither RNA replicases nor reverse transcriptase, and the presence of these enzymes are characteristic of specific types of viral infections. The ability of the viral protein hemagglutinin to bind red blood cells together into a detectable matrix may also be characterized as a biochemical test for viral infection, although strictly speaking hemagglutinin is not an "enzyme" and has no metabolic function.
Serological methods are highly sensitive, specific and often extremely rapid tests used to identify microorganisms. These tests are based upon the ability of an antibody to bind specifically to an antigen. The antigen, usually a protein or carbohydrate made by an infectious agent, is bound by the antibody. This binding then sets off a chain of events that can be visibly obvious in various ways, dependent upon the test. For example, "Strep throat" is often diagnosed within minutes, and is based on the appearance of antigens made by the causative agent, "S. pyogenes", that is retrieved from a patients throat with a cotton swab. Serological tests, if available, are usually the preferred route of identification, however the tests are costly to develop and the reagents used in the test often require refrigeration. Some serological methods are extremely costly, although when commonly used, such as with the "strep test", they can be inexpensive.
Complex serological techniques have been developed into what are known as Immunoassays. Immunoassays can use the basic antibody – antigen binding as the basis to produce an electro-magnetic or particle radiation signal, which can be detected by some form of instrumentation. Signal of unknowns can be compared to that of standards allowing quantitation of the target antigen. To aid in the diagnosis of infectious diseases, immunoassays can detect or measure antigens from either infectious agents or proteins generated by an infected organism in response to a foreign agent. For example, immunoassay A may detect the presence of a surface protein from a virus particle. Immunoassay B on the other hand may detect or measure antibodies produced by an organism's immune system that are made to neutralize and allow the destruction of the virus.
Instrumentation can be used to read extremely small signals created by secondary reactions linked to the antibody – antigen binding. Instrumentation can control sampling, reagent use, reaction times, signal detection, calculation of results, and data management to yield a cost effective automated process for diagnosis of infectious disease.