Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The history of a pregnancy event followed by a D&C leading to secondary amenorrhea or hypomenorrhea is typical. Hysteroscopy is the gold standard for diagnosis. Imaging by sonohysterography or hysterosalpingography will reveal the extent of the scar formation. Ultrasound is not a reliable method of diagnosing Asherman's Syndrome. Hormone studies show normal levels consistent with reproductive function.
A 2013 review concluded that there were no studies reporting on the link between intrauterine adhesions and long-term reproductive outcome after miscarriage, while similar pregnancy outcomes were reported subsequent to surgical management (e.g. D&C), medical management or conservative management (that is, watchful waiting). There is an association between surgical intervention in the uterus and the development of intrauterine adhesions, and between intrauterine adhesions and pregnancy outcomes, but there is still no clear evidence of any method of prevention of adverse pregnancy outcomes.
In theory, the recently pregnant uterus is particularly soft under the influence of hormones and hence, easily injured. D&C (including dilation and curettage, dilation and evacuation/suction curettage and manual vacuum aspiration) is a blind, invasive procedure, making it difficult to avoid endometrial trauma. Medical alternatives to D&C for evacuation of retained placenta/products of conception exist including misoprostol and mifepristone. Studies show this less invasive and cheaper method to be an efficacious, safe and an acceptable alternative to surgical management for most women. It was suggested as early as in 1993 that the incidence of IUA might be lower following medical evacuation (e.g. Misoprostol) of the uterus, thus avoiding any intrauterine instrumentation. So far, one study supports this proposal, showing that women who were treated for missed miscarriage with misoprostol did not develop IUA, while 7.7% of those undergoing D&C did. The advantage of misoprostol is that it can be used for evacuation not only following miscarriage, but also following birth for retained placenta or hemorrhaging.
Alternatively, D&C could be performed under ultrasound guidance rather than as a blind procedure. This would enable the surgeon to end scraping the lining when all retained tissue has been removed, avoiding injury.
Early monitoring during pregnancy to identify miscarriage can prevent the development of, or as the case may be, the recurrence of AS, as the longer the period after fetal death following D&C, the more likely adhesions may be to occur. Therefore, immediate evacuation following fetal death may prevent IUA.
The use of hysteroscopic surgery instead of D&C to remove retained products of conception or placenta is another alternative that could theoretically improve future pregnancy outcomes, although it could be less effective if tissue is abundant. Also, hysteroscopy is not a widely or routinely used technique and requires expertise.
There is no data to indicate that suction D&C is less likely than sharp curette to result in Asherman's. A recent article describes three cases of women who developed intrauterine adhesions following manual vacuum aspiration.
Adenomyosis can vary widely in the extent and location of its invasion within the uterus. As a result, there are no established pathognomonic features to allow for a definitive diagnosis of adenomyosis through non-invasive imaging. Nevertheless, non-invasive imaging techniques such as transvaginal ultrasonography (TVUS) and magnetic resonance imaging (MRI) can both be used to strongly suggest the diagnosis of adenomyosis, guide treatment options, and monitor response to treatment. Indeed, TVUS and MRI are the only two practical means available to establish a pre-surgical diagnosis.
The presence of a uterine fibroid versus an adnexal tumor is made. Fibroids can be mistaken for ovarian neoplasms. An uncommon tumor which may be mistaken for a fibroid is Sarcoma botryoides. It is more common in children and adolescents. Like a fibroid, it can also protrude from the vagina and is distinguished from fibroids. While palpation used in a pelvic examination can typically identify the presence of larger fibroids, gynecologic ultrasonography (ultrasound) has evolved as the standard tool to evaluate the uterus for fibroids. Sonography will depict the fibroids as focal masses with a heterogeneous texture, which usually cause shadowing of the ultrasound beam. The location can be determined and dimensions of the lesion measured. Also, magnetic resonance imaging (MRI) can be used to define the depiction of the size and location of the fibroids within the uterus.
Imaging modalities cannot clearly distinguish between the benign uterine leiomyoma and the malignant uterine leiomyosarcoma, however, the latter is quite rare. Fast growth or unexpected growth, such as enlargement of a lesion after menopause, raise the level of suspicion that the lesion might be a sarcoma. Also, with advanced malignant lesions, there may be evidence of local invasion. A biopsy is rarely performed and if performed, is rarely diagnostic. Should there be an uncertain diagnosis after ultrasounds and MRI imaging, surgery is generally indicated.
Other imaging techniques that may be helpful specifically in the evaluation of lesions that affect the uterine cavity are hysterosalpingography or sonohysterography.
Magnetic resonance imaging (MRI) provides slightly better diagnostic capability compared to TVUS, due to the increased ability of MRI to differentiate objectively between different types of soft tissue. This is possible with MRI's higher spatial and contrast resolution. Overall, it is estimated that MRI has a sensitivity of 74% and specificity of 91% for the detection of adenomyosis. Diagnosis through MRI focuses predominately upon investigating the junctional zone. The uterus will have a thickened junctional zone with darker/diminished signal on both T1 and T2 weighted sequences.
Three objective measures of the junctional zone can be used to diagnose adenomyosis.
1. A thickness of the junctional zone greater than 8–12 mm. Less than 8 mm is normal.
2. A junctional zone width being greater than 40% of the width of the myometrium.
3. Variability in the width of the junctional zone being greater than 5 mm.
Interspersed within the thickened, darker signal of the junctional zone, one will often see foci of hyperintensity (bright spots) on the T2 weighted scans representing small cystically dilatated glands or more acute sites of microhemorrhage.
MRI is limited by other factors, but not by calcified uterine fibroids (as is ultrasound). In particular, MRI is better able to differentiate adenomyosis from multiple small uterine fibroids.
About 1 out of 1000 lesions are or become malignant, typically as a leiomyosarcoma on histology. A sign that a lesion may be malignant is growth after menopause. There is no consensus among pathologists regarding the transformation of leiomyoma into a sarcoma.
A widely recognised method of estimating the risk of malignant ovarian cancer based on initial workup is the "risk of malignancy index" (RMI). It is recommended that women with an RMI score over 200 should be referred to a centre with experience in ovarian cancer surgery.
The RMI is calculated as follows:
There are two methods to determine the ultrasound score and menopausal score, with the resultant RMI being called RMI 1 and RMI 2, respectively, depending on what method is used:
An RMI 2 of over 200 has been estimated to have a sensitivity of 74 to 80%, a specificity of 89 to 92% and a positive predictive value of around 80% of ovarian cancer. RMI 2 is regarded as more sensitive than RMI 1.
A transvaginal ultrasound can reveal the condition.
Helpful techniques to investigate the uterine structure are transvaginal ultrasonography and sonohysterography, hysterosalpingography, MRI, and hysteroscopy. More recently 3-D ultrasonography has been advocated as an excellent non-invasive method to delineate the condition.
The major differential diagnosis is the uterine septum. The lack of agreement to separate these two entities makes it difficult to assess the results in the literature.
The diagnosis is made in asymptomatic pregnant women by obstetric ultrasonography. On pelvic examination a unilateral adnexal mass may be found. Typical symptoms are abdominal pain and, to a lesser degree, vaginal bleeding during pregnancy. Patients may present with hypovolemia or be in circulatory shock because of internal bleeding.
Ideally, ultrasound will show the location of the gestational sac in the ovary, while the uterine cavity is "empty", and if there is internal bleeding, it can be identified. Because of the proximity of the tube, the sonographic distinction between a tubal and an ovarian pregnancy may be difficult. Serial hCG levels generally show not the normal progressive rise.
In a series of 12 patients the mean gestation age was 45 days.
Histologically, the diagnosis has been made by Spiegelberg criteria on the surgical specimen of the removed ovary and tube. However, the tube and ovary are not usually removed as sonography allows for earlier diagnosis and surgeons strive to preserve the ovary. Prior to the introduction of Spiegelberg's criteria in 1878, the existence of ovarian pregnancy was in doubt; his criteria helped to identify the ovarian pregnancy from other ectopics:
- The gestational sac is located in the region of the ovary.
- The gestational sac is attached to the uterus by the ovarian ligament.
- Ovarian tissue is histologically proven in the wall of the gestational sac.
- The oviduct on the affected side is intact (this criterion, however, holds not true for a longer ongoing ovarian pregnancy).
An ovarian pregnancy can be mistaken for a tubal pregnancy or a hemorrhagic ovarian cyst or corpus luteum prior to surgery. Sometimes, only the presence of trophoblastic tissue during the histologic examination of material of a bleeding ovarian cyst shows that an ovarian pregnancy was the cause of the bleeding.
Cysts associated with hypothyroidism or other endocrine problems are managed by treating the underlying condition.
About 95% of ovarian cysts are benign, not cancerous.
Functional cysts and hemorrhagic ovarian cysts usually resolve spontaneously. However, the bigger an ovarian cyst is, the less likely it is to disappear on its own. Treatment may be required if cysts persist over several months, grow, or cause increasing pain.
Cysts that persist beyond two or three menstrual cycles, or occur in post-menopausal women, may indicate more serious disease and should be investigated through ultrasonography and laparoscopy, especially in cases where family members have had ovarian cancer. Such cysts may require surgical biopsy. Additionally, a blood test may be taken before surgery to check for elevated CA-125, a tumour marker, which is often found in increased levels in ovarian cancer, although it can also be elevated by other conditions resulting in a large number of false positives.
A pelvic examination will typically reveal a single vagina and a single cervix. Investigations are usually prompted on the basis of reproductive problems.
Helpful techniques to investigate the uterine structure are transvaginal ultrasonography and sonohysterography, hysterosalpingography, MRI, and hysteroscopy. More recently 3-D ultrasonography has been advocated as an excellent non-invasive method to evaluate uterine malformations.
A unicornuate uterus may be associated with a rudimentary horn on the opposite site. This horn may be communicating with the uterus, and linked to the ispilateral tube. Occasionally a pregnancy may implant into such a horn setting up a dangerous situation as such pregnancy can lead to a potentially fatal uterine rupture. Surgical resection of the horn is indicated.
A pelvic examination may reveal a double vagina or double cervix that should be further investigated and may lead to the discovery of a uterine septum. In most patients, however, the pelvic examination is normal. Investigations are usually prompted on the basis of reproductive problems.
Helpful techniques to investigate a septum are transvaginal ultrasonography and sonohysterography, MRI, and hysteroscopy. More recently 3-D ultrasonography has been advocated as an excellent non-invasive method to delineate the condition. Prior to modern imaging hysterosalpingography was used to help diagnose the uterine septum, however, a bicornuate uterus may deliver a similar image.
An important category of septate uterus is the hybrid type a variant that may be misdiagnosed as bicornuate uterus when seen by laparoscopy Professor El Saman From Egypt was the first to describe this anomaly and warned gynecologist about this common misdiagnosis, whenever there is a uterine fundus depression on laparoscopy gynecologists should compare the depth of this depression with the depth of the dividing internal interface. Hybrid septate uterus benefit from hysteroscopic metroplasty under laparoscopic control.
Uterine adenosarcomas are typically treated with a total abdominal hysterectomy and bilateral salpingoophorectomy (TAH-BSO). Ovary sparing surgery may be done in women wishing to preserve fertility.
Patients with a double uterus may need special attention during pregnancy as premature birth and malpresentation are common. Cesarean section was performed in 82% of patients reported by Heinonen.
Uterus didelphys, in certain studies, has also been found associated with higher rate of infertility, miscarriage, intrauterine growth retardation, and postpartum bleed.
Ovarian pregnancies are dangerous and prone to internal bleeding. Thus, when suspected, intervention is called for.
Traditionally, an explorative laparotomy was performed, and once the ovarian pregnancy was identified, an oophorectomy or salpingo-oophorectomy was performed, including the removal of the pregnancy. Today, the surgery can often be performed via laparoscopy. The extent of surgery varies according to the amount of tissue destruction that has
occurred. Patients with an ovarian pregnancy have a good prognosis for future fertility and therefore conservative surgical management is advocated. Further, in attempts to preserve ovarian tissue, surgery may involve just the removal of the pregnancy with only a part of the ovary. This can be accomplished by an ovarian wedge resection.
Ovarian pregnancies have been successfully treated with methotrexate since it was introduced in the management of ectopic pregnancy in 1988.
An ovarian pregnancy can develop together with a normal intrauterine pregnancy; such a heterotopic pregnancy will call for expert management as not to endanger the intrauterine pregnancy.
The exact incidence of maternal mortality related to placenta accreta and its complications is unknown, but has been reported to be as high as 6-7% in case series and surveys.
The prognosis is determined primarily by the cancer stage. Most tumours are discovered at an early stage and have a good prognosis, especially when compared to uterine carcinosarcoma. Five year survival for stage I and stage III tumours is approximately 80% and 50% respectively.
Other forms of uterine malformation need to be considered in the work-up for uterine septum. An arcuate uterus contains a residual cranial septum that is smaller than an incomplete septum but definitions between the two conditions are not standardized, - a cause for discrepancies in the literature.
A bicornuate uterus is sometimes confused with a septate uterus as in each situation the cavity is partitioned, however, in the former case the uterine body is cranially doubled (two uterine horns) while in the latter a single uterine body is present. The former represents a malformation of incomplete fusion of the Müllerian systems, and the latter of incomplete absorption. A hysterosalpingogram may not be able to distinguish between the two conditions. The differentiation, however, is important as a septum can be corrected by hysteroscopy, while a bicornuate uterus would be corrected by a metroplasty via laparotomy if necessary.
Gynecologic ultrasonography is the imaging modality of choice. Use of doppler ultrasound in the diagnosis has been suggested. However, doppler flow is not always absent in torsion – the definitive diagnosis is often made in the operating room.
Lack of ovarian blood flow on doppler sonography seems to be a good predictor of ovarian torsion. Women with pathologically low flow are more likely to have OT (77% vs. 29% in a study). The sensitivity and specificity of abnormal ovarian flow for OT are 44% and 92%, respectively, with a positive and negative predictive value of 78% and 71%, respectively. Specific flow features on Doppler sonography include:
- Little or no intra-ovarian venous flow. This is commonly seen in ovarian torsion.
- Absent arterial flow. This is a less common finding in ovarian torsion
- Absent or reversed diastolic flow
Normal vascularity does not exclude intermittent torsion. There may occasionally be normal Doppler flow because of the ovary's dual blood supply from both the ovarian arteries and uterine arteries.
Other ultrasonographic features include:
- Enlarged hypoechogenic or hyperechogenic ovary
- Peripherally displaced ovarian follicles
- Free pelvic fluid. This may be seen in more than 80% of cases
- "Whirlpool sign" of twisted vascular pedicle
- Underlying ovarian lesion can often be found
- Uterus may be slightly deviated towards the torted ovary.
The initial workup includes exclusion of pregnancy and cancer, by performing a pregnancy test, a pelvic exam and a gynecologic ultrasound. Further workup depends on outcomes of the preceding tests and may include hydrosonography, hysteroscopy, endometrial biopsy, and magnetic resonance imaging.
Ovarian torsion is difficult to diagnose accurately, and operation is often performed before certain diagnosis is made. A study at an obstetrics and gynaecology department found that preoperative diagnosis of ovarian torsion was confirmed in only 46% of people.
A pelvic examination will typically reveal a double vagina and a double cervix. Investigations are usually prompted on the basis of such findings as well as when reproductive problems are encountered. Not all cases of uterus didelphys involve duplication of the cervix and vagina.
Helpful techniques to investigate the uterine structure are transvaginal ultrasonography and sonohysterography, hysterosalpingography, MRI, and hysteroscopy. More recently 3-D ultrasonography has been advocated as an excellent non-invasive method to evaluate uterine malformations.
Uterus didelphys is often confused with a complete uterine septum. Often more than one method of investigation is necessary to accurately diagnose the condition. Correct diagnosis is crucial as treatment for these two conditions is very different. Whereas most doctors recommend removal of a uterine septum, they generally concur that it is better not to operate on a uterus didelphys. In either case, a highly qualified reproductive endocrinologist should be consulted.
Differential diagnosis of this condition includes the Birt-Hogg-Dubé syndrome and tuberous sclerosis. As the skin lesions are typically painful, it is also often necessary to exclude other painful tumors of the skin (including blue rubber bleb nevus, leiomyoma, eccrine spiradenoma, neuroma, dermatofibroma, angiolipoma, neurilemmoma, endometrioma, glomus tumor and granular cell tumor; the mnemonic "BLEND-AN-EGG" may be helpful). Other skin lesions that may need to be considered include cylindroma, lipoma, poroma and trichoepithelioma; these tend to be painless and have other useful distinguishing features.