Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In 1962, J. Selwyn Crawford MD from the British Research Council defined a nuchal cord as one that is wrapped 360 degrees around the fetal neck. Dr. Crawford commented "It is all the more remarkable, therefore, that little work has been done ... to analyze its effects during labor and delivery". To date, there is no prospective case control double-blind study looking at nuchal cords and observational studies vary in opinion as to the degree of poor outcomes. Also not included in these studies is which umbilical cord form (of the 8 different possible structures) was considered a nuchal cord.
Ultrasound diagnosis of a cord around the neck was first described in 1982. “Coils occur in about 25% of cases and ordinarily do no harm, but occasionally they may be so tight that constriction of the umbilical vessels and consequent hypoxia result.” Williams Obstetrics 16th Edition, has only one single sentence in the entire textbook regarding cords around the neck. By contrast, the First Edition of the Encyclopædia Britannica from 1770 had 20 pages of information about Umbilical Cord Pathology with drawings of Umbilical Cord Entanglement. The Royal College of Obstetricians and Gynaecologists has these images on its brochure. There are currently three recent texts on ultrasonography which demonstrate the ability of ultrasound to identify umbilical cord issues with reliability as of 2009.
A study published in 2004 was done to establish the sensitivity of ultrasound in the diagnosis of a nuchal cord. Each of 289 women, induced the same day, underwent a transabdominal ultrasound scan with an Aloka 1700 ultrasound machine with a 3.5 MHz abdominal probe, using gray-scale and color Doppler imaging immediately prior to induction of labor. Presence of the cord was sought in the transverse and sagittal plane of the neck. A nuchal cord was diagnosed if the cord was visualized lying around at least 3 of the 4 sides of the neck. A cord was actually present at delivery in 52 of the 289 women. Only 18 of the 52 cords or 35% of the nuchal cords were detected on ultrasound done immediately before delivery, and 65% of nuchal cords were not detected. Of the 237 cases where there was no cord at delivery, ultrasound had false positive results, i.e. diagnosed a cord in 44 of the 237 cases (19%) in which there was no cord present at all. In this study, ultrasound was only 35% accurate at finding a single loop, and only 60% accurate at detecting a nuchal cord wrapped multiple times around the neck.
In no study was it possible by ultrasound to distinguish between a loose or a tight cord, although at least 3 attempted to do so. Peregrine concludes that ultrasound diagnosis of nuchal cords will only be useful if doctors are able to do so reliably and predict which of those fetuses are likely to have a problem., However, perinatologists routinely look for umbilical cord issues in monoamniotic twins. Studies have shown an improvement in outcomes where cord entanglement was prenatally identified in these cases. Ultrasound measurement of the velocity of flow in the cord may be useful in the management of twins and chronically growth-retarded fetuses. Of course this depends on the training of the sonographer. To date there are no ultrasound courses which teach the identification of nuchal cord to physicians or technicians. A recent review by Wilson of the American Academy of Ultrasonography Technicians recommends the documentation of umbilical cord issues.
Clapp, et al, attempted to find out at what rate nuchal cords come and go during pregnancy. He recruited 84 healthy, non-smoking, non-substance abusing women carrying a single fetus, with certain dates before the 20th week of gestation. They all agreed to 4 extensive ultrasounds at 24-26, 30-32, 36–38 weeks gestation and during labor and delivery. They evaluated fetal biometry, fetal tone, fetal motion including breathing movements, amniotic fluid volume, fetal flow redistribution, velocity flow profiles from the umbilical artery at the body wall and placental insertion and at the origin of fetal middle cerebral artery. Finally, color flow Doppler imaging was used to determine whether a nuchal cord was present. Clapp reports that in 60%, or 50 of the 84 fetuses studied, a nuchal cord was seen on ultrasound at one of the 4 evaluations. He found that the presence of a nuchal cord linearly increases as the pregnancy continues. Larson, et al, found this to be true. She found, of the 13,895 singleton deliveries, a nuchal cord linearly increased every week of gestation, appearing in 6% at 20 weeks to 29.0% at 42 weeks gestation.
Retrospective data of over 182,000 births, with the statistical power to determine even mild associations, suggest that a single or multiple nuchal cords at the time of delivery is not associated with adverse perinatal outcomes, is associated with higher birthweights and fewer caesarean sections in births. Although some studies have found that a tight nuchal cord is associated with short term morbidity, it is unclear whether such outcomes are actually a result of the presence of the nuchal cord itself, or as a result of clamping and cutting the cord
Management of a presenting nuchal cord should be tailored to prevent umbilical cord compression whenever possible. Techniques to preserve an intact nuchal cord depend on how tightly the cord is wrapped around the infant’s neck. If the cord is loose, it can easily be slipped over the infant’s head. The infant can be delivered normally and placed on maternal abdomen as desired. If the cord is too tight to go over the infant’s head, the provider may be able to slip it over the infant’s shoulders and deliver the body through the cord. The cord can then be unwrapped from around the baby after birth. Finally, if the cord is too tight to slip back over the shoulders, one may use the somersault maneuver to allow the body to be delivered. The birth attendant may also choose to clamp and cut the umbilical cord to allow for vaginal delivery if other methods of nuchal cord management are not feasible.
Umbilical cord prolapse should always be considered a possibility when there is a sudden decrease in fetal heart rate or variable decelerations, particularly after the rupture of membranes. With overt prolapses, the diagnosis can be confirmed if the cord can be palpated on vaginal examination. Without overt prolapse, the diagnosis can only be confirmed after a cesarean section, though even then it will not always be evident at time of procedure.
A spinal tap is performed in the low back with dye injected into the spinal fluid. X-Rays are performed followed by a CT scan of the spine to help see narrowing of the spinal canal.
This is a very effective study in cases of lateral recess stenosis. It is also necessary for patients in which MRI is contraindicated, such as those with implanted pacemakers.
MRI has become the most frequently used study to diagnose spinal stenosis. The MRI uses electromagnetic signals to produce images of the spine. MRIs are helpful because they show more structures, including nerves, muscles, and ligaments, than seen on x-rays or CT scans. MRIs are helpful at showing exactly what is causing spinal nerve compression.
Diagnosis is made through a combination of patient history, neurological examination, and medical imaging. Magnetic resonance imaging (MRI) is considered the best imaging modality for Chiari malformation since it visualizes neural tissue such as the cerebellar tonsils and spinal cord as well as bone and other soft tissues. CT and CT myelography are other options and were used prior to the advent of MRI, but they characterize syringomyelia and other neural abnormalities less well.
By convention the cerebellar tonsil position is measured relative to the basion-opisthion line, using sagittal T1 MRI images or sagittal CT images. The selected cutoff distance for abnormal tonsil position is somewhat arbitrary since not everyone will be symptomatic at a certain amount of tonsil displacement, and the probability of symptoms and syrinx increases with greater displacement, however greater than 5 mm is the most frequently cited cutoff number, though some consider 3–5 mm to be "borderline," and symptoms and syrinx may occur above that. One study showed little difference in cerebellar tonsil position between standard recumbent MRI and upright MRI for patients without a history of whiplash injury. Neuroradiological investigation is used to first rule out any intracranial condition that could be responsible for tonsillar herniation. Neuroradiological diagnostics evaluate the severity of crowding of the neural structures within the posterior cranial fossa and their impact on the foramen magnum. Chiari 1.5 is a term used when both brainstem and tonsillar herniation through the foramen magnum are present.
The diagnosis of a Chiari II malformation can be made prenatally through ultrasound.
The primary concern with umbilical cord prolapse is inadequate blood supply, and thus oxygen, to the fetus if the cord becomes compressed. The cord can become compressed either due to mechanical pressure (usually from the presenting fetal part) or from sudden contraction of the vessels due to decreased temperatures in the vagina in comparison to the uterus. This can lead to death of the fetus or other complications.
Historically, the rate of fetal death in the setting of cord prolapse has been as high 40%. However, these estimates occurred in the context of home or births outside of the hospital. When considering cord prolapses that have occurred in inpatient labor and delivery settings, the rate drops to as low as 0-3%, though the mortality rate remains higher than for fetuses without cord prolapse. The reduction in mortality for hospital births is likely due to the ready availability of immediate cesarean section.
Many other fetal outcomes have been studied, including Apgar score (a quick assessment of a newborn's health status) at 5 minutes and length of hospitalization after delivery. While both measures are worse for newborns delivered after cord prolapse, it is unclear what effect this has in the long-term. Relatively large studies that have tried to quantify long-term effects of cord prolapse on children found that less than 1% (1 in 120 studied) suffered a major neurologic handicap, and less than 1% (110 in 16,675) had diagnosed cerebral palsy.
In the late 19th century, Austrian pathologist Hans Chiari described seemingly related anomalies of the hindbrain, the so-called Chiari malformations I, II and III. Later, other investigators added a fourth (Chiari IV) malformation. The scale of severity is rated I – IV, with IV being the most severe. Types III and IV are very rare.
Other conditions sometimes associated with Chiari malformation include hydrocephalus, syringomyelia, spinal curvature, tethered spinal cord syndrome, and connective tissue disorders such as Ehlers-Danlos syndrome and Marfan syndrome.
Chiari malformation is the most frequently used term for this set of conditions. The use of the term Arnold–Chiari malformation has fallen somewhat out of favor over time, although it is used to refer to the type II malformation. Current sources use "Chiari malformation" to describe four specific types of the condition, reserving the term "Arnold-Chiari" for type II only. Some sources still use "Arnold-Chiari" for all four types.
Chiari malformation or Arnold–Chiari malformation should not be confused with Budd-Chiari syndrome, a hepatic condition also named for Hans Chiari.
In Pseudo-Chiari Malformation, Leaking of CSF may cause displacement of the cerebellar tonsils and similar symptoms sufficient to be mistaken for a Chiari I malformation.
Umbilical cord compression may be relieved by the mother switching to another position. In persistent severe signs of fetal distress, Cesarean section may be needed.
Examination for pain sensation, by pinprick, shows leg (lumbar nerves) analgesia with perineal (sacral nerves) escape. The maintenance of perineal sensation with absence of pain sensation over the lumbar nerve roots is typical for an extra-medullary and intra-thecal (outside the cord and within the dural sheath) process. Inability to walk, with this unusual sensory examination completes a triad of signs and usually represents spinal tuberculosis. The triad is paraplegia with lumbar loss of pain sensation and presence of perineal altered sensation.
Diagnosis is usually confirmed by an MRI scan or CT scan, depending on availability. Early surgery in acute onset of severe cases has been reported to be important.
A radiographic evaluation using an X-ray, CT scan, or MRI can determine if there is damage to the spinal column and where it is located. X-rays are commonly available and can detect instability or misalignment of the spinal column, but do not give very detailed images and can miss injuries to the spinal cord or displacement of ligaments or disks that do not have accompanying spinal column damage. Thus when X-ray findings are normal but SCI is still suspected due to pain or SCI symptoms, CT or MRI scans are used. CT gives greater detail than X-rays, but exposes the patient to more radiation, and it still does not give images of the spinal cord or ligaments; MRI shows body structures in the greatest detail. Thus it is the standard for anyone who has neurological deficits found in SCI or is thought to have an unstable spinal column injury.
Neurological evaluations to help determine the degree of impairment are performed initially and repeatedly in the early stages of treatment; this determines the rate of improvement or deterioration and informs treatment and prognosis. The ASIA Impairment Scale outlined above is used to determine the level and severity of injury.
Early diagnosis can allow for preventive treatment. Signs that allow early diagnosis include changes in bowel and bladder function and loss of feeling in groin.
Dexamethasone (a potent glucocorticoid) in doses of 16 mg/day may reduce edema around the lesion and protect the cord from injury. It may be given orally or intravenously for this indication.
Surgery is indicated in localised compression as long as there is some hope of regaining function. It is also occasionally indicated in patients with little hope of regaining function but with uncontrolled pain. Postoperative radiation is delivered within 2–3 weeks of surgical decompression. Emergency radiation therapy (usually 20 Gray in 5 fractions, 30 Gray in 10 fractions or 8 Gray in 1 fraction) is the mainstay of treatment for malignant spinal cord compression. It is very effective as pain control and local disease control. Some tumours are highly sensitive to chemotherapy (e.g. lymphomas, small-cell lung cancer) and may be treated with chemotherapy alone.
Once complete paralysis has been present for more than about 24 hours before treatment, the chances of useful recovery are greatly diminished, although slow recovery, sometimes months after radiotherapy, is well recognised.
The median survival of patients with metastatic spinal cord compression is about 12 weeks, reflecting the generally advanced nature of the underlying malignant disease.
On cardiotocography (CTG), umbilical cord compression can present with variable decelerations in fetal heart rate.
Diagnosis is by X-rays but preferably magnetic resonance imaging (MRI) of the whole spine. The most common causes of cord compression are tumors, but abscesses and granulomas (e.g. in tuberculosis) are equally capable of producing the syndrome. Tumors that commonly cause cord compression are lung cancer (non-small cell type), breast cancer, prostate cancer, renal cell carcinoma, thyroid cancer, lymphoma and multiple myeloma.
There are two tests that can provide a definite diagnosis of myelomalacia; magnetic resonance imaging (MRI), or myelography. Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to visualize the internal structure of the body used in the diagnosing of myelomalacia. Certain MRI findings can detect where bone density and matter has been lost in people with spinal cord injuries. Diffuse hyperintensity appreciated on T2-weighted imaging of the spinal cord can be an indication of the onset or progression of myelomalacia
Spinal arteriovenous malformations (AVMs, or angiomatous malformations) are congenital (from birth) abnormalities of blood vessels. Arteries that directly communicate with veins bypass the capillary network (which has not yet developed) and thus creates a shunt. AVMs appear as a mass of , dilated vessels. In regards to the spinal cord, they are usually located in the thoracolumbar region (between the thoracic and lumbar regions, 60% of the time), as opposed to the upper thoracic (20%) and cervical regions (approximately 15%). Cervical malformations arise from the anterior spinal artery and lie within the cord, whereas thoracolumbar malformations can be internal, external or encompass both areas of the cord.
Malformations can be recognised as part of an acute illness or gradual onset disease. In diseases such as subarachnoid hemorrhage, signs and symptoms include headache, neck stiffness and back and leg pain. Extradural, subdural and intramedullary hematomas are all signs of acute cord compression. Gradual onset diseases are more common (85-90% of all diseases leading to a diagnosis of malformation) and are usually due to an increased venous pressure. Other factors such as thrombosis or arachnoiditis can be involved. A bruit (unusual blood sounds) may be heard overlying the spinal arteriovenous malformation. Very occasionally, nevus (moles) or angiolipomas are found.
Myelography is used to confirm the diagnosis of AVMs and it shows 'snake-like' vessels on the cord's surface. If the myelogram is positive, angiography is required to show the extent of malformation and the exact site of the shunt. Magnetic resonance imaging (MRI) may show the appropriate area. If AVMs are left untreated, 50% of patients with gradual symptoms will be unable to walk within 3 years of onset. Operations can prevent progression and may improve any gait or incontinence.
Myelopathy is primarily diagnosed by clinical exam findings. Because the term "myelopathy" describes a clinical syndrome that can be caused by many pathologies the differential diagnosis of myelopathy is extensive. In some cases the onset of myelopathy is rapid, in others, such as CSM, the course may be insidious with symptoms developing slowly over a period of months. As a consequence, the diagnosis of CSM is often delayed. As the disease is thought to be progressive, this may impact negatively on outcome.
Once the clinical diagnosis "myelopathy" has been established, the underlying cause needs to be investigated. Most commonly this involves the use of medical imaging techniques. The best way of visualising the spinal cord is Magnetic Resonance Imaging (MRI). Apart from T1 and T2 MRI images, which are commonly used for routine diagnosis, more recently the use quantitative MRI signals is being investigated. Further imaging modalities used for evaluating myelopathy include plain X-rays for detecting arthritic changes of the bones, and Computer Tomography, which is often used for pre-operative planning of surgical interventions for cervical spondylotic myelopathy. Angiography is used to examine blood vessels in suspected cases of vascular myelopathy.
The presence and severity of myelopathy can also be evaluated by means of Transcranial Magnetic Stimulation (TMS), a neurophysiological method that allows the measurement of the time required for a neural impulse to cross the pyramidal tracts, starting from the cerebral cortex and ending at the anterior horn cells of the cervical, thoracic or lumbar spinal cord. This measurement is called "Central Conduction Time" ("CCT"). TMS can aid physicians to:
- determine whether myelopathy exists
- identify the level of the spinal cord where myelopathy is located. This is especially useful in cases where more than two lesions may be responsible for the clinical symptoms and signs, such as in patients with two or more cervical disc hernias
- follow-up the progression of myelopathy in time, for example before and after cervical spine surgery
TMS can also help in the differential diagnosis of different causes of pyramidal tract damage.
The first stage in the management of a suspected spinal cord injury is geared toward basic life support and preventing further injury: maintaining airway, breathing, and circulation and immobilizing the spine.
In the emergency setting, anyone who has been subjected to forces strong enough to cause SCI is treated as though they have instability in the spinal column and is immobilized to prevent damage to the spinal cord. Injuries or fractures in the head, neck, or pelvis as well as penetrating trauma near the spine and falls from heights are assumed to be associated with an unstable spinal column until it is ruled out in the hospital. High-speed vehicle crashes, sports injuries involving the head or neck, and diving injuries are other mechanisms that indicate a high SCI risk. Since head and spinal trauma frequently coexist, anyone who is unconscious or has a lowered level of consciousness as a result of a head injury is immobilized.
A rigid cervical collar is applied to the neck, and the head is held immobile with blocks on either side and the person is strapped to a backboard. Extrication devices are used to move people without moving the spine if they are still inside a vehicle or other confined space.
Modern trauma care includes a step called clearing the cervical spine, ruling out spinal cord injury if the patient is fully conscious and not under the influence of drugs or alcohol, displays no neurological deficits, has no pain in the middle of the neck and no other painful injuries that could distract from neck pain. If these are all absent, no immobilization is necessary.
If an unstable spinal column injury is moved, damage may occur to the spinal cord. Between 3 and 25% of SCIs occur not at the time of the initial trauma but later during treatment or transport. While some of this is due to the nature of the injury itself, particularly in the case of multiple or massive trauma, some of it reflects the failure to immobilize the spine adequately.
SCI can impair the body's ability to keep warm, so warming blankets may be needed.
The treatment and prognosis of myelopathy depends on the underlying cause: myelopathy caused by infection requires medical treatment with pathogen specific antibiotics. Similarly, specific treatments exist for multiple sclerosis, which may also present with myelopathy. As outlined above, the most common form of myelopathy is secondary to degeneration of the cervical spine. Newer findings have challenged the existing controversy with respect to surgery for cervical spondylotic myelopathy by demonstrating that patients benefit from surgery.
Potential non-surgical treatments include:
- Education about the course of the condition and how to relieve symptoms
- Medicines to relieve pain and inflammation, such as acetaminophen, nonsteroidal anti-inflammatory drugs (NSAIDs)
- Exercise, to maintain or achieve overall good health, aerobic exercise, such as riding a stationary bicycle, which allows for a forward lean, walking, or swimming can relieve symptoms
- Weight loss, to relieve symptoms and slow progression of the stenosis
- Physical therapy, to provide education, instruction, and support for self-care; physical therapy instructs on stretching and strength exercises that may lead to a decrease in pain and other symptoms
An omphalocele is often detected through AFP screening or a detailed fetal ultrasound. Genetic counseling and genetic testing such as amniocentesis are usually offered during the pregnancy.
Potential surgical treatments include:
- Anterior cervical discectomy and fusion - A surgical treatment of nerve root or spinal cord compression by decompressing the spinal cord and nerve roots of the cervical spine with a discectomy in order to stabilize the corresponding vertebrae.
- Laminoplasty - A surgical procedure relieve pressure on the spinal cord by cutting the lamina on both sides of the affected vertebrae (cutting through on one side and merely cutting a groove on the other) and then "swinging" the freed flap of bone open.
- Laminectomy - A surgical procedure in which the lamina of the vertebra is removed or trimmed to widen the spinal canal and create more space for the spinal nerves and thecal sac.
There are multiple techniques used in the diagnosis of spondylosis, these are;
- Cervical Compression Test, a variant of Spurling's test, is performed by laterally flexing the patient's head and placing downward pressure on it. Neck or shoulder pain on the ipsilateral side (i.e. the side to which the head is flexed) indicates a positive result for this test. However it should be noted that a positive test result is not necessarily a positive result for spondylosis and as such additional testing is required.
- Lhermitte sign: feeling of electrical shock with patient neck flexion
- Reduced range of motion of the neck, the most frequent objective finding on physical examination
- MRI and CT scans are helpful for pain diagnosis but generally are not definitive and must be considered together with physical examinations and history.
Wobblers is definitively diagnosed by x-ray, nuclear scintography or bone scan. X-rays will show channel widening or filling the easiest and are often most cost effective to horse owners. X-rays will also show any structural anomaly, arthritis, facet remodeling, or bone spurs present. Preliminary diagnosis can be made by ultrasound but x-rays are needed to measure the true depth of facet involvement. For extent of damage to associated structures, veterinarians may opt to have the horse undergo a bone scan or nuclear scintography.