Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
          
        
There are 3 possible ways to test the fetal antigen status. Free Cell DNA, Amniocentesis, and Chorionic Villus Sampling. Of the three, CVS is no longer used due to risk of worsening the maternal antibody response. Once antigen status has been determined, assessment may be done with MCA scans.
- Free Cell DNA can be run on certain antigens. Blood is taken from the mother, and using PCR, can detect the K, C, c, D, and E alleles of fetal DNA. This blood test is non-invasive to the fetus and is an easy way of checking antigen status and risk of HDN. Testing has proven very accurate and is routinely done in the UK at the International Blood Group Reference Laboratory in Bristol. Sanequin laboratory in Amsterdam, Netherlands also performs this test. For US patients, blood may be sent to either of the labs. In the US, Sensigene is done by Sequenome to determine fetal D status. Sequenome does not accept insurance in the US, but US and Canadian patients have had insurance cover the testing done overseas.
- Amniocentesis is another recommended method for testing antigen status and risk for HDN. Fetal antigen status can be tested as early as 15 weeks by PCR of fetal cells.
- CVS is possible as well to test fetal antigen status but is not recommended. CVS carries a higher risk of fetal maternal hemorrhage and can raise antibody titers, potentially worsening the antibody effect.
Blood testing for the mother is called an Indirect Coombs Test (ICT) or an Indirect Agglutination Test (IAT). This test tells whether there are antibodies in the maternal plasma. If positive, the antibody is identified and given a titer. Critical titers are associated with significant risk of fetal anemia and hydrops. Titers of 1:8 or higher is considered critical for Kell. Titers of 1:16 or higher are considered critical for all other antibodies. After critical titer is reached, care is based on MCA scans. If antibodies are low and have a sudden jump later in pregnancy, an MCA scan is warranted. If the titer undergoes a 4 fold increase, it should be considered significant regardless of if the critical value has been reached. It should be noted that maternal titers are not useful in predicting fetal anemia after the first affected gestation and should not be used for the basis of care. Titers are tested monthly until 24 weeks, after which they are done every 2 weeks.
"In only 2 situations are patients not monitored identically to patients who are Rh sensitized. The first is that of alloimmunization to the c, E, or, C antigens. Some concern exists that hemolysis may occur in these patients with a lower than 1:16 titer. Thus, if the initial titer is 1:4 and stable but increases at 26 weeks' gestation to 1:8, assessment with MCA Doppler velocity at that point is reasonable. However, if the patient presents in the first trimester with a 1:8 titer that remains stable at 1:8 throughout the second trimester, continued serial antibody titers are appropriate.
The second situation in which patients should not be treated identically to patients who are Rh D sensitized is that of Kell isoimmunization because several cases of severe fetal hemolysis with anti-Kell antibodies have occurred in the setting of low titers."
In the case of a positive ICT, the woman must carry a medical alert card or bracelet for life because of the risk of a transfusion reaction.
While most pregnant women experience some itch from time to time, itching on the palms and soles without a visible rash, or persisting severe or extensive itch symptoms should be reported to the midwife or obstetrican.
To obtain a diagnosis of ICP, there are two LFT (liver function tests) and Serum bile acid test. The liver function tests (LFTs) is a simple blood test, the results of which should be available by the next day. If the ALT level is elevated, this, plus pruritus of palms and soles, could be considered as potentially diagnostic of ICP but only with elevated bile acid levels (however LFTs are not always elevated in ICP patients). The serum bile acid blood test for ICP is a quantitative measurement of bile salts. The results of this test often take longer to return, but the test is more specific for ICP.
Other problems with the liver that occur in pregnancy should be considered by the treating clinician. These include preeclampsia, the HELLP syndrome, and acute fatty liver of pregnancy. Furthermore, other causes of hepatitis, like hepatitis viruses, cancer and certain medications, should also be considered.
Upon diagnosis, many providers will prescribe Ursodeoxycholic Acid. While there is no cure for ICP, and no way to guarantee a successful outcome, studies have shown a slightly better fetal and maternal outcome from administration of Ursodeoxycholic Acid, whereas Cholestyramine appears to only relieve itching.
If additional blood tests to check clotting function identify a problem, giving Vitamin K may help avoid the risk of hemorrhage at delivery.
Delivery by 35–37 completed weeks may be important to fetal outcome as a recent study demonstrated that in severe ICP (defined as bile acids greater than 40 umol/L) the risk of stillbirth was 1.5% compared to 0.5% of uncomplicated pregnancies. This risk rose further if bile acids doubled,
Amniocentesis and chorionic villus sampling are procedures conducted to assess the fetus. A sample of amniotic fluid is obtained by the insertion of a needle through the abdomen and into the uterus. Chorionic villus sampling is a similar procedure with a sample of tissue removed rather than fluid. These procedures are not associated with pregnancy loss during the second trimester but they are associated with miscarriages and birth defects in the first trimester. Miscarriage caused by invasive prenatal diagnosis (chorionic villus sampling (CVS) and amniocentesis) is rare (about 1%).
Obstetric ultrasonography can detect fetal abnormalities, detect multiple pregnancies, and improve gestational dating at 24 weeks. The resultant estimated gestational age and due date of the fetus are slightly more accurate than methods based on last menstrual period. Ultrasound is used to measure the nuchal fold in order to screen for Downs syndrome.
The Centers for Disease Control and Prevention (CDC) recommends HIV testing for all pregnant women as a part of routine prenatal care. The test is usually performed in the first trimester of pregnancy with other routine laboratory tests. HIV testing is recommended because HIV-infected women who do not receive testing are more likely to transmit the infection to their children.
HIV testing may be offered to pregnant women on an "opt-in" or an "opt-out" basis. In the "opt-in" model, women are counseled on HIV testing and elect to receive the test by signing a consent form. In the "opt-out" model, the HIV test is automatically performed with other routine prenatal tests. If a woman does not want to be tested for HIV, she must specifically refuse the test and sign a form declining testing. The CDC recommends "opt-out" testing for all pregnant women because it improves disease detection and treatment and helps reduce transmission to children.
If a woman chooses to decline testing, she will not receive the test. However, she will continue to receive HIV counseling throughout the pregnancy so that she may be as informed as possible about the disease and its impact. She will be offered HIV testing at all stages of her pregnancy in case she changes her mind.
HIV testing begins with a screening test. The most common screening test is the rapid HIV antibody test which tests for HIV antibodies in blood, urine, or oral fluid. HIV antibodies are only produced if an individual is infected with the disease. Therefore, presence of the antibodies is indicative of an HIV infection. Sometimes, however, a person may be infected with HIV but the body has not produced enough antibodies to be detected by the test. If a woman has risk factors for HIV infection but tests negative on the initial screening test, she should be retested in 3 months to confirm that she does not have HIV. Another screening test that is more specific is the HIV antigen/antibody test. This is a newer blood test that can detect HIV infection quicker than the antibody test because it detects both virus particles and antibodies in the blood.
Any woman who has a positive HIV screening test must receive follow-up testing to confirm the diagnosis. The follow-up test can differentiate HIV-1 from HIV-2 and is a more specific antibody test. It may also detect the virus directly in the bloodstream.
The data presented is for comparative and illustrative purposes only, and may have been superseded by updated data.
According to American Congress of Obstetricians and Gynecologists, the main methods to calculate gestational age are:
- Directly calculating the days since the beginning of the last menstrual period.
- Early obstetric ultrasound, comparing the size of an embryo or fetus to that of a reference group of pregnancies of known gestational age (such as calculated from last menstrual periods), and using the mean gestational age of other embryos or fetuses of the same size. If the gestational age as calculated from an early ultrasound is contradictory to the one calculated directly from the last menstrual period, it is still the one from the early ultrasound that is used for the rest of the pregnancy.
- In case of in vitro fertilization, calculating days since oocyte retrieval or co-incubation and adding 14 days.
There are 3 possible ways to test the fetal antigen status. Free Cell DNA, Amniocentesis, and Chorionic Villus Sampling. Of the three, CVS is no longer used due to risk of worsening the maternal antibody response. Once antigen status has been determined, assessment may be done with MCA scans.
- Free Cell DNA can be run on certain antigens. Blood is taken from the mother, and using PCR, can detect the K, C, c, D, and E alleles of fetal DNA. This blood test is non-invasive to the fetus and is an easy way of checking antigen status and risk of HDN. Testing has proven very accurate and is routinely done in the UK at the International Blood Group Reference Laboratory in Bristol. Sanequin laboratory in Amsterdam, Netherlands also performs this test. For US patients, blood may be sent to either of the labs. In the US, Sensigene is done by Sequenome to determine fetal D status. Sequenome does not accept insurance in the US, but US and Canadian patients have had insurance cover the testing done overseas.
- Amniocentesis is another recommended method for testing antigen status and risk for HDN. Fetal antigen status can be tested as early as 15 weeks by PCR of fetal cells.
- CVS is possible as well to test fetal antigen status but is not recommended. CVS carries a higher risk of fetal maternal hemorrhage and can raise antibody titers, potentially worsening the antibody effect.
MCA scans Middle cerebral artery - peak systolic velocity is changing the way sensitized pregnancies are managed. This test is done noninvasively with ultrasound. By measuring the peak velocity of blood flow in the middle cerebral artery, a MoM (multiple of the median) score can be calculated. MoM of 1.5 or greater indicates severe anemia and should be treated with IUT.
Blood is generally drawn from the father to help determine fetal antigen status. If he is homozygous for the antigen, there is a 100% chance of all offspring in the pairing to be positive for the antigen and at risk for HDN. If he is heterozygous, there is a 50% chance of offspring to be positive for the antigen. This test can help with knowledge for the current baby, as well as aid in the decision about future pregnancies. With RhD, the test is called the RhD genotype. With RhCE, and Kell antigen it is called an antigen phenotype.
A review article in The New England Journal of Medicine based on a consensus meeting of the Society of Radiologists in Ultrasound in America (SRU) has suggested that miscarriage should be diagnosed only if any of the following criteria are met upon ultrasonography visualization:
Blood is generally drawn from the father to help determine fetal antigen status. If he is homozygous for the antigen, there is a 100% chance of all offspring in the pairing to be positive for the antigen and at risk for HDN. If he is heterozygous, there is a 50% chance of offspring to be positive for the antigen. This test can help with knowledge for the current baby, as well as aid in the decision about future pregnancies. With RhD, the test is called the RhD genotype. With RhCE, and Kell antigen it is called an antigen phenotype.
In some cases, the direct coombs will be negative but severe, even fatal HDN can occur. An indirect coombs needs to be run in cases of anti-C, anti-c, and anti-M. Anti-M also recommends antigen testing to rule out the presence of HDN.
- Hgb - the infant’s hemoglobin should be tested from cord blood.
- Reticulocyte count - Reticulocytes are elevated when the infant is producing more blood to combat anemia. A rise in the retic count can mean that an infant may not need additional transfusions. Low retic is observed in infants treated with IUT and in those with HDN from anti-Kell
- Neutrophils - as Neutropenia is one of the complications of HDN, the neutrophil count should be checked.
- Thrombocytes - as thrombocytopenia is one of the complications of HDN, the thrombocyte count should be checked.
- Bilirubin should be tested from cord blood.
- Ferritin - because most infants affected by HDN have iron overload, a ferritin must be run before giving the infant any additional iron.
- Newborn Screening Tests - Transfusion with donor blood during pregnancy or shortly after birth can affect the results of the Newborn Screening Tests. It is recommended to wait and retest 10–12 months after last transfusion. In some cases, DNA testing from saliva can be used to rule out certain conditions.
Most Rh disease can be prevented by treating the mother during pregnancy or promptly (within 72 hours) after childbirth. The mother has an intramuscular injection of anti-Rh antibodies (Rho(D) immune globulin). This is done so that the fetal rhesus D positive erythrocytes are destroyed before the immune system of the mother can discover them and become sensitized. This is passive immunity and the effect of the immunity will wear off after about 4 to 6 weeks (or longer depending on injected dose) as the anti-Rh antibodies gradually decline to zero in the maternal blood.
It is part of modern antenatal care to give all rhesus D negative pregnant women an anti-RhD IgG immunoglobulin injection at about 28 weeks gestation (with or without a booster at 34 weeks gestation). This reduces the effect of the vast majority of sensitizing events which mostly occur after 28 weeks gestation. Giving Anti-D to all Rhesus negative pregnant women can mean giving it to mothers who do not need it (because her baby is Rhesus negative or their blood did not mix). Many countries routinely give Anti-D to Rhesus D negative women in pregnancy. In other countries, stocks of Anti-D can run short or even run out. Before Anti-D is made routine in these countries, stocks should be readily available so that it is available for women who need Anti-D in an emergency situation.
A recent review found research into giving Anti-D to all Rhesus D negative pregnant women is of low quality. However the research did suggest that the risk of the mother producing antibodies to attack Rhesus D positive fetal cells was lower in mothers who had the Anti-D in pregnancy. There were also fewer mothers with a positive kleihauer test (which shows if the mother’s and unborn baby’s blood has mixed).
Anti-RhD immunoglobulin is also given to non-sensitized rhesus negative women immediately (within 72 hours—the sooner the better) after potentially sensitizing events that occur earlier in pregnancy.
The discovery of cell-free DNA in the maternal plasma has allowed for the non-invasive determination of the fetal RHD genotype. In May 2017, the Society for Obstetrics and Gynecology of Canada is now recommending that the optimal management of the D-negative pregnant woman is based on the prediction of the fetal D-blood group by cell-free DNA in maternal plasma with targeted antenatal anti-D prophylaxis. This provides the optimal care for D-negative pregnant women and has been adopted as the standard approach in a growing number of countries around the world. It is no longer considered appropriate to treat all D-negative pregnant women with human plasma derivatives when there are no benefits to her or to the fetus in a substantial percentage of cases.
There are 3 possible ways to test the fetal antigen status. Free Cell DNA, Amniocentesis, and Chorionic Villus Sampling. Of the three, CVS is no longer used due to risk of worsening the maternal antibody response. Once antigen status has been determined, assessment may be done with MCA scans.
- Free Cell DNA can be run on certain antigens. Blood is taken from the mother, and using PCR, can detect the K, C, c, D, and E alleles of fetal DNA. This blood test is non-invasive to the fetus and is an easy way of checking antigen status and risk of HDN. Testing has proven very accurate and is routinely done in the UK at the International Blood Group Reference Laboratory in Bristol. Sanequin laboratory in Amsterdam, Netherlands also performs this test. For US patients, blood may be sent to either of the labs. In the US, Sensigene is done by Sequenome to determine fetal D status. Sequenome does not accept insurance in the US, but US and Canadian patients have had insurance cover the testing done overseas.
- Amniocentesis is another recommended method for testing antigen status and risk for HDN. Fetal antigen status can be tested as early as 15 weeks by PCR of fetal cells.
- CVS is possible as well to test fetal antigen status but is not recommended. CVS carries a higher risk of fetal maternal hemorrhage and can raise antibody titers, potentially worsening the antibody effect.
According to current recommendations by the WHO, US CDC and U.S. Department of Health and Human Services (DHHS), all individuals with HIV should begin ART. The recommendation is stronger under the following conditions:
- CD4 count below 350 cells/mm
- High viral load (>100,000 copies/ml)
- Progression of HIV to AIDS
- Development of HIV-related infections and illnesses
- Pregnancy
Women are encouraged to begin treatment as soon as they are diagnosed with HIV. If they are diagnosed prior to pregnancy, they should continue with ART during the pregnancy. If the diagnosis of HIV is made during the pregnancy, ART should be initiated immediately.
Cocaine use during pregnancy can be discovered by asking the mother, but sometimes women will not admit to having used drugs. Mothers may lie for fear of prosecution or having their children taken away, but even when they are willing to tell the truth their memories may not be very accurate. It may also not be possible to be sure of the purity of the drug they have taken. More reliable methods for detecting cocaine exposure involve testing the newborn's hair or meconium (the infant's earliest stool). Hair analysis, however, can give false positives for cocaine exposure, and a newborn may not have enough hair to test. The newborn's urine can be tested for cocaine and metabolites, but it must be collected as soon as possible after birth. It is not known how long after exposure the markers will still show up in a newborn's urine. The mother's urine can also be tested for drugs, but it cannot detect drugs used too far in the past or determine how much or how often the drugs were used. Tests cannot generally detect cocaine use over a week prior to sample collection. Mothers are more honest about cocaine use when their urine is also tested, but many users still deny it. Both maternal and neonatal urine tests can give false negatives.
Blood is generally drawn from the father to help determine fetal antigen status. If he is homozygous for the antigen, there is a 100% chance of all offspring in the pairing to be positive for the antigen and at risk for HDN. If he is heterozygous, there is a 50% chance of offspring to be positive for the antigen. This test can help with knowledge for the current baby, as well as aid in the decision about future pregnancies. With RhD, the test is called the RhD genotype. With RhCE, and Kell antigen it is called an antigen phenotype.
The official recommendation from the United States Preventive Services Task Force is that for persons that do not fall within an at-risk population and are asymptomatic, there is not enough evidence to prove that there is any benefit in screening for vitamin D deficiency.
The apprehension is not necessarily data driven and is a cautionary response to the lack of clinical studies in pregnant women. The indication is a trade-off between the adverse effects of the drug, the risks associated with intercurrent diseases and pregnancy complications, and the efficiency of the drug to prevent or ameliorate such risks. In some cases, the use of drugs in pregnancy carries benefits that outweigh the risks. For example, high fever is harmful for the fetus in the early months, thus the use of paracetamol (acetaminophen) is generally associated with lower risk than the fever itself. Similarly, diabetes mellitus during pregnancy may need intensive therapy with insulin to prevent complications to mother and baby. Pain management for the mother is another important area where an evaluation of the benefits and risks is needed. NSAIDs such as Ibuprofen and Naproxen are probably safe for use for a short period of time, 48–72 hours, once the mother has reached the second trimester. If taking aspirin for pain management the mother should never take a dose higher than 100 mg.
U.S. Code of Federal Regulations requires that certain drugs and biological products must be labelled very specifically with respect to their effects on pregnant populations, including a definition of a "pregnancy category." These rules are enforced by the Food and Drug Administration (FDA). The FDA does not regulate labelling for all hazardous and non-hazardous substances and some potentially hazardous substances are not assigned a pregnancy category.
Australia’s categorisations system takes into account the birth defects, the effects around the birth or when the mother gives birth, and problems that will arise later in the child's life caused from the drug taken. The system places them into a category of their severity that the drug could cause to the infant when it crosses the placenta(Australian Government, 2014).
Pre-eclampsia can mimic and be confused with many other diseases, including chronic hypertension, chronic renal disease, primary seizure disorders, gallbladder and pancreatic disease, immune or thrombotic thrombocytopenic purpura, antiphospholipid syndrome and hemolytic-uremic syndrome. It must be considered a possibility in any pregnant woman beyond 20 weeks of gestation. It is particularly difficult to diagnose when preexisting disease such as hypertension is present. Women with acute fatty liver of pregnancy may also present with elevated blood pressure and protein in the urine, but differ by the extent of liver damage. Other disorders that can cause high blood pressure include thyrotoxicosis, pheochromocytoma, and drug misuse.
The serum concentration of 25(OH)D is typically used to determine vitamin D status. Most vitamin D is converted to 25(OH)D in the serum, giving an accurate picture of vitamin D status.
The level of serum 1,25(OH)D is not usually used to determine vitamin D status because it often is regulated by other hormones in the body such as parathyroid hormone. The levels of 1,25(OH)D can remain normal even when a person may be vitamin D deficient.
Serum level of 25(OH)D is the laboratory test ordered to indicate whether or not a person has vitamin D deficiency or insufficiency.
It is also considered reasonable to treat at-risk persons with vitamin D supplementation without checking the level of 25(OH)D in the serum, as vitamin D toxicity has only been rarely reported to occur.
Levels of 25(OH)D that are consistently above 200 ng/mL (500 nmol/L) are thought to be potentially toxic, although data from humans are sparse. Vitamin D toxicity usually results from taking supplements in excess. Hypercalcemia is often the cause of symptoms, and levels of 25(OH)D above 150 ng/mL (375 nmol/L) are usually found, although in some cases 25(OH)D levels may appear to be normal. Periodic measurement of serum calcium in individuals receiving large doses of vitamin D is recommended.
In low-risk pregnancies, the association between cigarette smoking and a reduced risk of pre-eclampsia has been consistent and reproducible across epidemiologic studies. High-risk pregnancies (those with pregestational diabetes, chronic hypertension, history of pre-eclampsia in a previous pregnancy, or multifetal gestation) showed no significant protective effect. The reason for this discrepancy is not definitively known; research supports speculation that the underlying pathology increases the risk of preeclampsia to such a degree that any measurable reduction of risk due to smoking is masked. However, the damaging effects of smoking on overall health and pregnancy outcomes outweighs the benefits in decreasing the incidence of preeclampsia. It is recommended that smoking be stopped prior to, during and after pregnancy.
Studies suggest that marijuana use in the months prior to or during the early stages of pregnancy may interfere with normal placental development and consequently increase the risk of preeclampsia.
Previa can be confirmed with an ultrasound. Transvaginal ultrasound has superior accuracy as compared to transabdominal one, thus allowing measurement of distance between placenta and cervical os. This has rendered traditional classification of placenta previa obsolete.
False positives may be due to following reasons:
- Overfilled bladder compressing lower uterine segment
- Myometrial contraction simulating placental tissue in abnormally low location
- Early pregnancy low position, which in third trimester may be entirely normal due to differential growth of the uterus.
In such cases, repeat scanning is done after an interval of 15–30 minutes.
In parts of the world where ultrasound is unavailable, it is not uncommon to confirm the diagnosis with an examination in the surgical theatre. The proper timing of an examination in theatre is important. If the woman is not bleeding severely she can be managed non-operatively until the 36th week. By this time the baby's chance of survival is as good as at full term.