Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The Centers for Disease Control and Prevention (CDC) recommends HIV testing for all pregnant women as a part of routine prenatal care. The test is usually performed in the first trimester of pregnancy with other routine laboratory tests. HIV testing is recommended because HIV-infected women who do not receive testing are more likely to transmit the infection to their children.
HIV testing may be offered to pregnant women on an "opt-in" or an "opt-out" basis. In the "opt-in" model, women are counseled on HIV testing and elect to receive the test by signing a consent form. In the "opt-out" model, the HIV test is automatically performed with other routine prenatal tests. If a woman does not want to be tested for HIV, she must specifically refuse the test and sign a form declining testing. The CDC recommends "opt-out" testing for all pregnant women because it improves disease detection and treatment and helps reduce transmission to children.
If a woman chooses to decline testing, she will not receive the test. However, she will continue to receive HIV counseling throughout the pregnancy so that she may be as informed as possible about the disease and its impact. She will be offered HIV testing at all stages of her pregnancy in case she changes her mind.
HIV testing begins with a screening test. The most common screening test is the rapid HIV antibody test which tests for HIV antibodies in blood, urine, or oral fluid. HIV antibodies are only produced if an individual is infected with the disease. Therefore, presence of the antibodies is indicative of an HIV infection. Sometimes, however, a person may be infected with HIV but the body has not produced enough antibodies to be detected by the test. If a woman has risk factors for HIV infection but tests negative on the initial screening test, she should be retested in 3 months to confirm that she does not have HIV. Another screening test that is more specific is the HIV antigen/antibody test. This is a newer blood test that can detect HIV infection quicker than the antibody test because it detects both virus particles and antibodies in the blood.
Any woman who has a positive HIV screening test must receive follow-up testing to confirm the diagnosis. The follow-up test can differentiate HIV-1 from HIV-2 and is a more specific antibody test. It may also detect the virus directly in the bloodstream.
The important factors for successful prevention of GBS-EOD using IAP and the universal screening approach are:
- Reach most pregnant women for antenatal screens
- Proper sample collection
- Using an appropriate procedure for detecting GBS
- Administering a correct IAP to GBS carriers
Most cases of GBS-EOD occur in term infants born to mothers who screened negative for GBS colonization and in preterm infants born to mothers who were not screened, though some false-negative results observed in the GBS screening tests can be due to the test limitations and to the acquisition of GBS between the time of screening and delivery. These data show that improvements in specimen collection and processing methods for detecting GBS are still necessary in some settings. False-negative screening test, along with failure to receive IAP in women delivering preterm with unknown GBS colonization status, and the administration of inappropriate IAP agents to penicillin-allergic women account for most missed opportunities for prevention of cases of GBS-EOD.
GBS-EOD infections presented in infants whose mothers had been screened as GBS culture-negative are particularly worrying, and may be caused by incorrect sample collection, delay in processing the samples, incorrect laboratory techniques, recent antibiotic use, or GBS colonization after the screening was carried out.
According to current recommendations by the WHO, US CDC and U.S. Department of Health and Human Services (DHHS), all individuals with HIV should begin ART. The recommendation is stronger under the following conditions:
- CD4 count below 350 cells/mm
- High viral load (>100,000 copies/ml)
- Progression of HIV to AIDS
- Development of HIV-related infections and illnesses
- Pregnancy
Women are encouraged to begin treatment as soon as they are diagnosed with HIV. If they are diagnosed prior to pregnancy, they should continue with ART during the pregnancy. If the diagnosis of HIV is made during the pregnancy, ART should be initiated immediately.
According to American Congress of Obstetricians and Gynecologists, the main methods to calculate gestational age are:
- Directly calculating the days since the beginning of the last menstrual period.
- Early obstetric ultrasound, comparing the size of an embryo or fetus to that of a reference group of pregnancies of known gestational age (such as calculated from last menstrual periods), and using the mean gestational age of other embryos or fetuses of the same size. If the gestational age as calculated from an early ultrasound is contradictory to the one calculated directly from the last menstrual period, it is still the one from the early ultrasound that is used for the rest of the pregnancy.
- In case of in vitro fertilization, calculating days since oocyte retrieval or co-incubation and adding 14 days.
There are 3 possible ways to test the fetal antigen status. Free Cell DNA, Amniocentesis, and Chorionic Villus Sampling. Of the three, CVS is no longer used due to risk of worsening the maternal antibody response. Once antigen status has been determined, assessment may be done with MCA scans.
- Free Cell DNA can be run on certain antigens. Blood is taken from the mother, and using PCR, can detect the K, C, c, D, and E alleles of fetal DNA. This blood test is non-invasive to the fetus and is an easy way of checking antigen status and risk of HDN. Testing has proven very accurate and is routinely done in the UK at the International Blood Group Reference Laboratory in Bristol. Sanequin laboratory in Amsterdam, Netherlands also performs this test. For US patients, blood may be sent to either of the labs. In the US, Sensigene is done by Sequenome to determine fetal D status. Sequenome does not accept insurance in the US, but US and Canadian patients have had insurance cover the testing done overseas.
- Amniocentesis is another recommended method for testing antigen status and risk for HDN. Fetal antigen status can be tested as early as 15 weeks by PCR of fetal cells.
- CVS is possible as well to test fetal antigen status but is not recommended. CVS carries a higher risk of fetal maternal hemorrhage and can raise antibody titers, potentially worsening the antibody effect.
Due date estimation basically follows two steps:
- Determination of which time point is to be used as origin for gestational age, as described in section above.
- Adding the estimated gestational age at childbirth to the above time point. Childbirth on average occurs at a gestational age of 280 days (40 weeks), which is therefore often used as a standard estimation for individual pregnancies. However, alternative durations as well as more individualized methods have also been suggested.
"Naegele's rule" is a standard way of calculating the due date for a pregnancy when assuming a gestational age of 280 days at childbirth. The rule estimates the expected date of delivery (EDD) by adding a year, subtracting three months, and adding seven days to the origin of gestational age. Alternatively there are mobile apps, which essentially always give consistent estimations compared to each other and correct for leap year, while pregnancy wheels made of paper can differ from each other by 7 days and generally do not correct for leap year.
Furthermore, actual childbirth has only a certain probability of occurring within the limits of the estimated due date. A study of singleton live births came to the result that childbirth has a standard deviation of 14 days when gestational age is estimated by first trimester ultrasound, and 16 days when estimated directly by last menstrual period.
No current culture-based test is both accurate enough and fast enough to be recommended for detecting GBS once labour starts. Plating of swab samples requires time for the bacteria to grow, meaning that this is unsuitable as an intrapartum point-of-care test.
Alternative methods to detect GBS in clinical samples (as vaginorectal swabs) rapidly have been developed, such are the methods based on nucleic acid amplification tests, such as polymerase chain reaction (PCR) tests, and DNA hybridization probes. These tests can also be used to detect GBS directly from broth media, after the enrichment step, avoiding the subculture of the incubated enrichment broth to an appropriate agar plate.
Testing women for GBS colonization using vaginal or rectal swabs at 35–37 weeks of gestation and culturing them in enriched media is not as rapid as a PCR test that would check whether the pregnant woman is carrying GBS at delivery. And PCR tests, allow starting IAP on admission to the labour ward in those women in whom it is not known if they are GBS carriers or not. PCR testing for GBS carriage could, in the future, be sufficiently accurate to guide IAP. However, the PCR technology to detect GBS must be improved and simplified to make the method cost-effective and fully useful as point-of-care testing]] to be carried out in the labour ward (bedside testing). These tests still cannot replace antenatal culture for the accurate detection of GBS carriers.
The data presented is for comparative and illustrative purposes only, and may have been superseded by updated data.
Blood is generally drawn from the father to help determine fetal antigen status. If he is homozygous for the antigen, there is a 100% chance of all offspring in the pairing to be positive for the antigen and at risk for HDN. If he is heterozygous, there is a 50% chance of offspring to be positive for the antigen. This test can help with knowledge for the current baby, as well as aid in the decision about future pregnancies. With RhD, the test is called the RhD genotype. With RhCE, and Kell antigen it is called an antigen phenotype.
There are 3 possible ways to test the fetal antigen status. Free Cell DNA, Amniocentesis, and Chorionic Villus Sampling. Of the three, CVS is no longer used due to risk of worsening the maternal antibody response. Once antigen status has been determined, assessment may be done with MCA scans.
- Free Cell DNA can be run on certain antigens. Blood is taken from the mother, and using PCR, can detect the K, C, c, D, and E alleles of fetal DNA. This blood test is non-invasive to the fetus and is an easy way of checking antigen status and risk of HDN. Testing has proven very accurate and is routinely done in the UK at the International Blood Group Reference Laboratory in Bristol. Sanequin laboratory in Amsterdam, Netherlands also performs this test. For US patients, blood may be sent to either of the labs. In the US, Sensigene is done by Sequenome to determine fetal D status. Sequenome does not accept insurance in the US, but US and Canadian patients have had insurance cover the testing done overseas.
- Amniocentesis is another recommended method for testing antigen status and risk for HDN. Fetal antigen status can be tested as early as 15 weeks by PCR of fetal cells.
- CVS is possible as well to test fetal antigen status but is not recommended. CVS carries a higher risk of fetal maternal hemorrhage and can raise antibody titers, potentially worsening the antibody effect.
MCA scans Middle cerebral artery - peak systolic velocity is changing the way sensitized pregnancies are managed. This test is done noninvasively with ultrasound. By measuring the peak velocity of blood flow in the middle cerebral artery, a MoM (multiple of the median) score can be calculated. MoM of 1.5 or greater indicates severe anemia and should be treated with IUT.
Blood is generally drawn from the father to help determine fetal antigen status. If he is homozygous for the antigen, there is a 100% chance of all offspring in the pairing to be positive for the antigen and at risk for HDN. If he is heterozygous, there is a 50% chance of offspring to be positive for the antigen. This test can help with knowledge for the current baby, as well as aid in the decision about future pregnancies. With RhD, the test is called the RhD genotype. With RhCE, and Kell antigen it is called an antigen phenotype.
Blood is generally drawn from the father to help determine fetal antigen status. If he is homozygous for the antigen, there is a 100% chance of all offspring in the pairing to be positive for the antigen and at risk for HDN. If he is heterozygous, there is a 50% chance of offspring to be positive for the antigen. This test can help with knowledge for the current baby, as well as aid in the decision about future pregnancies. With RhD, the test is called the RhD genotype. With RhCE, and Kell antigen it is called an antigen phenotype.
In some cases, the direct coombs will be negative but severe, even fatal HDN can occur. An indirect coombs needs to be run in cases of anti-C, anti-c, and anti-M. Anti-M also recommends antigen testing to rule out the presence of HDN.
- Hgb - the infant’s hemoglobin should be tested from cord blood.
- Reticulocyte count - Reticulocytes are elevated when the infant is producing more blood to combat anemia. A rise in the retic count can mean that an infant may not need additional transfusions. Low retic is observed in infants treated with IUT and in those with HDN from anti-Kell
- Neutrophils - as Neutropenia is one of the complications of HDN, the neutrophil count should be checked.
- Thrombocytes - as thrombocytopenia is one of the complications of HDN, the thrombocyte count should be checked.
- Bilirubin should be tested from cord blood.
- Ferritin - because most infants affected by HDN have iron overload, a ferritin must be run before giving the infant any additional iron.
- Newborn Screening Tests - Transfusion with donor blood during pregnancy or shortly after birth can affect the results of the Newborn Screening Tests. It is recommended to wait and retest 10–12 months after last transfusion. In some cases, DNA testing from saliva can be used to rule out certain conditions.
Cocaine use during pregnancy can be discovered by asking the mother, but sometimes women will not admit to having used drugs. Mothers may lie for fear of prosecution or having their children taken away, but even when they are willing to tell the truth their memories may not be very accurate. It may also not be possible to be sure of the purity of the drug they have taken. More reliable methods for detecting cocaine exposure involve testing the newborn's hair or meconium (the infant's earliest stool). Hair analysis, however, can give false positives for cocaine exposure, and a newborn may not have enough hair to test. The newborn's urine can be tested for cocaine and metabolites, but it must be collected as soon as possible after birth. It is not known how long after exposure the markers will still show up in a newborn's urine. The mother's urine can also be tested for drugs, but it cannot detect drugs used too far in the past or determine how much or how often the drugs were used. Tests cannot generally detect cocaine use over a week prior to sample collection. Mothers are more honest about cocaine use when their urine is also tested, but many users still deny it. Both maternal and neonatal urine tests can give false negatives.
There are 3 possible ways to test the fetal antigen status. Free Cell DNA, Amniocentesis, and Chorionic Villus Sampling. Of the three, CVS is no longer used due to risk of worsening the maternal antibody response. Once antigen status has been determined, assessment may be done with MCA scans.
- Free Cell DNA can be run on certain antigens. Blood is taken from the mother, and using PCR, can detect the K, C, c, D, and E alleles of fetal DNA. This blood test is non-invasive to the fetus and is an easy way of checking antigen status and risk of HDN. Testing has proven very accurate and is routinely done in the UK at the International Blood Group Reference Laboratory in Bristol. Sanequin laboratory in Amsterdam, Netherlands also performs this test. For US patients, blood may be sent to either of the labs. In the US, Sensigene is done by Sequenome to determine fetal D status. Sequenome does not accept insurance in the US, but US and Canadian patients have had insurance cover the testing done overseas.
- Amniocentesis is another recommended method for testing antigen status and risk for HDN. Fetal antigen status can be tested as early as 15 weeks by PCR of fetal cells.
- CVS is possible as well to test fetal antigen status but is not recommended. CVS carries a higher risk of fetal maternal hemorrhage and can raise antibody titers, potentially worsening the antibody effect.
Most Rh disease can be prevented by treating the mother during pregnancy or promptly (within 72 hours) after childbirth. The mother has an intramuscular injection of anti-Rh antibodies (Rho(D) immune globulin). This is done so that the fetal rhesus D positive erythrocytes are destroyed before the immune system of the mother can discover them and become sensitized. This is passive immunity and the effect of the immunity will wear off after about 4 to 6 weeks (or longer depending on injected dose) as the anti-Rh antibodies gradually decline to zero in the maternal blood.
It is part of modern antenatal care to give all rhesus D negative pregnant women an anti-RhD IgG immunoglobulin injection at about 28 weeks gestation (with or without a booster at 34 weeks gestation). This reduces the effect of the vast majority of sensitizing events which mostly occur after 28 weeks gestation. Giving Anti-D to all Rhesus negative pregnant women can mean giving it to mothers who do not need it (because her baby is Rhesus negative or their blood did not mix). Many countries routinely give Anti-D to Rhesus D negative women in pregnancy. In other countries, stocks of Anti-D can run short or even run out. Before Anti-D is made routine in these countries, stocks should be readily available so that it is available for women who need Anti-D in an emergency situation.
A recent review found research into giving Anti-D to all Rhesus D negative pregnant women is of low quality. However the research did suggest that the risk of the mother producing antibodies to attack Rhesus D positive fetal cells was lower in mothers who had the Anti-D in pregnancy. There were also fewer mothers with a positive kleihauer test (which shows if the mother’s and unborn baby’s blood has mixed).
Anti-RhD immunoglobulin is also given to non-sensitized rhesus negative women immediately (within 72 hours—the sooner the better) after potentially sensitizing events that occur earlier in pregnancy.
The discovery of cell-free DNA in the maternal plasma has allowed for the non-invasive determination of the fetal RHD genotype. In May 2017, the Society for Obstetrics and Gynecology of Canada is now recommending that the optimal management of the D-negative pregnant woman is based on the prediction of the fetal D-blood group by cell-free DNA in maternal plasma with targeted antenatal anti-D prophylaxis. This provides the optimal care for D-negative pregnant women and has been adopted as the standard approach in a growing number of countries around the world. It is no longer considered appropriate to treat all D-negative pregnant women with human plasma derivatives when there are no benefits to her or to the fetus in a substantial percentage of cases.
Blood is generally drawn from the father to help determine fetal antigen status. If he is homozygous for the antigen, there is a 100% chance of all offspring in the pairing to be positive for the antigen and at risk for HDN. If he is heterozygous, there is a 50% chance of offspring to be positive for the antigen. This test can help with knowledge for the current baby, as well as aid in the decision about future pregnancies. With RhD, the test is called the RhD genotype. With RhCE, and Kell antigen it is called an antigen phenotype.
Up to 15 weeks' gestation, suction-aspiration or vacuum aspiration are the most common surgical methods of induced abortion. "Manual vacuum aspiration" (MVA) consists of removing the fetus or embryo, placenta, and membranes by suction using a manual syringe, while "electric vacuum aspiration" (EVA) uses an electric pump. These techniques differ in the mechanism used to apply suction, in how early in pregnancy they can be used, and in whether cervical dilation is necessary.
MVA, also known as "mini-suction" and "menstrual extraction", can be used in very early pregnancy, and does not require cervical dilation. Dilation and curettage (D&C), the second most common method of surgical abortion, is a standard gynecological procedure performed for a variety of reasons, including examination of the uterine lining for possible malignancy, investigation of abnormal bleeding, and abortion. Curettage refers to cleaning the walls of the uterus with a curette. The World Health Organization recommends this procedure, also called "sharp curettage," only when MVA is unavailable.
From the 15th week of gestation until approximately the 26th, other techniques must be used. Dilation and evacuation (D&E) consists of opening the cervix of the uterus and emptying it using surgical instruments and suction. After the 16th week of gestation, abortions can also be induced by intact dilation and extraction (IDX) (also called intrauterine cranial decompression), which requires surgical decompression of the fetus's head before evacuation. IDX is sometimes called "partial-birth abortion", which has been federally banned in the United States.
In the third trimester of pregnancy, induced abortion may be performed surgically by intact dilation and extraction or by hysterotomy. Hysterotomy abortion is a procedure similar to a caesarean section and is performed under general anesthesia. It requires a smaller incision than a caesarean section and is used during later stages of pregnancy.
First-trimester procedures can generally be performed using local anesthesia, while second-trimester methods may require deep sedation or general anesthesia.
Medical abortions are those induced by abortifacient pharmaceuticals. Medical abortion became an alternative method of abortion with the availability of prostaglandin analogs in the 1970s and the antiprogestogen mifepristone (also known as RU-486) in the 1980s.
The most common early first-trimester medical abortion regimens use mifepristone in combination with a prostaglandin analog (misoprostol or gemeprost) up to 9 weeks gestational age, methotrexate in combination with a prostaglandin analog up to 7 weeks gestation, or a prostaglandin analog alone. Mifepristone–misoprostol combination regimens work faster and are more effective at later gestational ages than methotrexate–misoprostol combination regimens, and combination regimens are more effective than misoprostol alone. This regime is effective in the second trimester. Medical abortion regiments involving mifepristone followed by misoprostol in the cheek between 24 and 48 hours later are effective when performed before 63 days' gestation.
In very early abortions, up to 7 weeks gestation, medical abortion using a mifepristone–misoprostol combination regimen is considered to be more effective than surgical abortion (vacuum aspiration), especially when clinical practice does not include detailed inspection of aspirated tissue. Early medical abortion regimens using mifepristone, followed 24–48 hours later by buccal or vaginal misoprostol are 98% effective up to 9 weeks gestational age. If medical abortion fails, surgical abortion must be used to complete the procedure.
Early medical abortions account for the majority of abortions before 9 weeks gestation in Britain, France, Switzerland, and the Nordic countries. In the United States, the percentage of early medical abortions is far lower.
Medical abortion regimens using mifepristone in combination with a prostaglandin analog are the most common methods used for second-trimester abortions in Canada, most of Europe, China and India, in contrast to the United States where 96% of second-trimester abortions are performed surgically by dilation and evacuation.
The apprehension is not necessarily data driven and is a cautionary response to the lack of clinical studies in pregnant women. The indication is a trade-off between the adverse effects of the drug, the risks associated with intercurrent diseases and pregnancy complications, and the efficiency of the drug to prevent or ameliorate such risks. In some cases, the use of drugs in pregnancy carries benefits that outweigh the risks. For example, high fever is harmful for the fetus in the early months, thus the use of paracetamol (acetaminophen) is generally associated with lower risk than the fever itself. Similarly, diabetes mellitus during pregnancy may need intensive therapy with insulin to prevent complications to mother and baby. Pain management for the mother is another important area where an evaluation of the benefits and risks is needed. NSAIDs such as Ibuprofen and Naproxen are probably safe for use for a short period of time, 48–72 hours, once the mother has reached the second trimester. If taking aspirin for pain management the mother should never take a dose higher than 100 mg.
The determination of the safety of a medication can be evaluated by considering the following:
- The age and maturity of the infant. Full term infants are better able to metabolize medications than premature infants
- The weight of the infant.
- The amount and percentage of breastmilk consumed by the infant. An infant taking solid foods with breastfeeding will receive a lower dose of medication.
- The general health of the infant and the general health of the mother.
- The nature of the mother's illness, if present.
- The general information about the drug other literature documenting studies related to the drug and breastfeeding.
- The duration of the drug therapy.
- Is the drug short-acting? A short-acting form of the drug may be a better choice for a breastfeeding mother rather than a longer-acting form that stays in the mother's system for a longer period.
- How is the medication being given?
- Does the drug interfere with lactation?
U.S. Code of Federal Regulations requires that certain drugs and biological products must be labelled very specifically with respect to their effects on pregnant populations, including a definition of a "pregnancy category." These rules are enforced by the Food and Drug Administration (FDA). The FDA does not regulate labelling for all hazardous and non-hazardous substances and some potentially hazardous substances are not assigned a pregnancy category.
Australia’s categorisations system takes into account the birth defects, the effects around the birth or when the mother gives birth, and problems that will arise later in the child's life caused from the drug taken. The system places them into a category of their severity that the drug could cause to the infant when it crosses the placenta(Australian Government, 2014).
The pregnancy category of a medication is an assessment of the risk of fetal injury due to the pharmaceutical, if it is used as directed by the mother during pregnancy. It does "not" include any risks conferred by pharmaceutical agents or their metabolites in breast milk.
Every drug has specific information listed in its product literature. The British National Formulary used to provide a table of drugs to be avoided or used with caution in pregnancy, and did so using a limited number of key phrases, but now Appendix 4 (which was the Pregnancy table) has been removed. Appendix 4 is now titled "Intravenous Additives". However, information that was previously available in the former Appendix 4 (pregnancy) and Appendix 5 (breast feeding) is now available in the individual drug monographs.
Obstetric ultrasound has become useful in the assessment of the cervix in women at risk for premature delivery. A short cervix preterm is undesirable: A cervical length of less than 25 mm at or before 24 weeks of gestational age is the most common definition of cervical incompetence.
Fetal fibronectin (fFN) has become an important biomarker—the presence of this glycoprotein in the cervical or vaginal secretions indicates that the border between the chorion and deciduas has been disrupted. A positive test indicates an increased risk of preterm birth, and a negative test has a high predictive value. It has been shown that only 1% of women in questionable cases of preterm labor delivered within the next week when the test was negative.
In general, the indications for anticoagulation during pregnancy are the same as the general population. This includes (but is not limited to) a recent history of deep venous thrombosis (DVT) or pulmonary embolism, a metallic prosthetic heart valve, and atrial fibrillation in the setting of structural heart disease.
In addition to these indications, anticoagulation may be of benefit in individuals with lupus erythematosus, individuals who have a history of DVT or PE associated with a previous pregnancy, and even with individuals with a history of coagulation factor deficiencies and DVT not associated with a previous pregnancy.
In pregnant women with a history of recurrent miscarriage, anticoagulation seems to increase the live birth rate among those with antiphospholipid syndrome and perhaps those with congenital thrombophilia but not in those with unexplained recurrent miscarriage.