Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Another method of measuring the severity of mitral stenosis is the simultaneous left and right heart chamber catheterization. The right heart catheterization (commonly known as Swan-Ganz catheterization) gives the physician the mean pulmonary capillary wedge pressure, which is a reflection of the left atrial pressure. The left heart catheterization, on the other hand, gives the pressure in the left ventricle. By simultaneously taking these pressures, it is possible to determine the gradient between the left atrium and left ventricle during ventricular diastole, which is a marker for the severity of mitral stenosis. This method of evaluating mitral stenosis tends to overestimate the degree of mitral stenosis, however, because of the time lag in the pressure tracings seen on the right-heart catheterization and the slow Y descent seen on the wedge tracings. If a trans-septal puncture is made during right heart catheterization, however, the pressure gradient can accurately quantify the severity of mitral stenosis.
Chest X-ray may also assist in diagnosis, showing left atrial enlargement.
Electrocardiography may show "P mitrale", that is, broad, notched P waves in several or many leads with a prominent late negative component to the P wave in lead V, and may also be seen in mitral regurgitation, and, potentially, any cause of overload of the left atrium. Thus, "P-sinistrocardiale" may be a more appropriate term.
A color flow and doppler imaging is used to help confirm the presence as well as evaluate the severity of ASD and MS.
A chest x-ray will be given to determine the size of the heart and the blood vessels supplying blood to the lungs.
A chest X-ray can also assist in the diagnosis and provide clues as to the severity of the disease, showing the degree of calcification of the valve, and in a chronic condition, an enlarged left ventricle and atrium.
A bicuspid aortic valve can be associated with a heart murmur located at the right second intercostal space. Often there will be differences in blood pressures between upper and lower extremities. The diagnosis can be assisted with echocardiography or magnetic resonance imaging (MRI). Four-dimensional magnetic resonance imaging (4D MRI) is a technique that defines blood flow characteristics and patterns throughout the vessels, across valves, and in compartments of the heart. Four-dimensional imaging enables accurate visualizations of blood flow patterns in a three-dimensional (3D) spatial volume, as well as in a fourth temporal dimension. Current 4D MRI systems produces high-resolution images of blood flow in just a single scan session.
Cardiac chamber catheterization provides a definitive diagnosis, indicating severe stenosis in valve area of <1.0 cm (normally about 3 cm). It can directly measure the pressure on both sides of the aortic valve. The pressure gradient may be used as a decision point for treatment. It is useful in symptomatic people before surgery. The standard for diagnosis of aortic stenosis is noninvasive testing with echocardiography. Cardiac catheterization is reserved for cases in which there is discrepancy between the clinical picture and non-invasive testing, due to risks inherent to crossing the aortic valve such as stroke.
A VSD can be detected by cardiac auscultation. Classically, a VSD causes a pathognomonic holo- or pansystolic murmur. Auscultation is generally considered sufficient for detecting a significant VSD. The murmur depends on the abnormal flow of blood from the left ventricle, through the VSD, to the right ventricle. If there is not much difference in pressure between the left and right ventricles, then the flow of blood through the VSD will not be very great and the VSD may be silent. This situation occurs a) in the fetus (when the right and left ventricular pressures are essentially equal), b) for a short time after birth (before the right ventricular pressure has decreased), and c) as a late complication of unrepaired VSD. Confirmation of cardiac auscultation can be obtained by non-invasive cardiac ultrasound (echocardiography). To more accurately measure ventricular pressures, cardiac catheterization, can be performed.
The diagnosis of pulmonary valve stenosis can be achieved via echocardiogram, as well as a variety of other means among them are: ultrasound, in which images of the heart chambers in utero where the tricuspid valve has thickening (or due to Fallot's tetralogy, Noonan's syndrome, and other congenital defects) and in infancy auscultation of the heart can reveal identification of a murmur.
Some other conditions to contemplate (in diagnosis of pulmonic valvular stenosis) are the following:
- Infundibular stenosis
- Supravalvular pulmonary stenosis
- Dysplastic pulmonic valve stenosis
In regards to the diagnosis of pulmonary atresia the body requires oxygenated blood for survival. pulmonary atresia is not threatening to a developing fetus however, because the mother's placenta provides the needed oxygen since the baby's lungs are not yet functional. Once the baby is born its lungs must now provide the oxygen needed for survival, but with pulmonary atresia there is no opening on the pulmonary valve for blood to get to the lungs and become oxygenated. Due to this, the newborn baby is blue in color and pulmonary atresia can usually be diagnosed within hours or minutes after birth.
The diagnosis of pulmonary atresia can be done via the following exams/methods: an echocardiogram, chest x-ray, EKG and an exam to measure the amount of in the body.
BAV may become calcified later in life, which may lead to varying degrees of severity of aortic stenosis that will manifest as murmurs. If the leaflets do not close correctly, aortic regurgitation can occur. If these become severe enough, they may require heart surgery.The heart is put under more stress in order to either pump more blood through a stenotic valve or attempt to circulate regurgitation blood through a leaking valve.
One of the most notable associations with BAV is the tendency for these patients to present with ascending aortic aneurysmal lesions.
The extracellular matrix of the aorta in patients with BAV shows marked deviations from that of the normal tricuspid aortic valve.
It is currently believed that an increase in the ratio of MMP2 (Matrix Metalloproteinases 2) to TIMP1 (Tissue Inhibitor Metalloproteinases 1) may be responsible for the abnormal degradation of the valve matrix and therefore lead to aortic dissection and aneurysm. However, other studies have also shown MMP9 involvement with no differences in TIMP expression. The size of the proximal aorta should be evaluated carefully during the workup. The initial diameter of the aorta should be noted and annual evaluation with CT scan, or MRI to avoid ionizing radiation, should be recommended to the patient; the examination should be conducted more frequently if a change in aortic diameter is seen. From this monitoring, the type of surgery that should be offered to the patient can be determined based on the change in size of the aorta.
Coarctation of the aorta (a congenital narrowing in the region of the ductus arteriosus) has also been associated with BAV.
In the diagnosis of tricuspid insufficiency a chest x-ray will demonstrate right heart enlargement. An echocardiogram will assess the chambers of the heart, as well as, right ventricular pressure. Cardiac magnetic resonance may also be used as a diagnostic tool, and finally, cardiac catheterization may determine the extent of the regurgitation.
Although there are several classifications for VSD, the most accepted and unified classification is that of Congenital Heart Surgery Nomenclature and Database Project.
The classification is based on the location of the VSD on the right ventricular surface of the inter ventricular septum and is as follows:
The following table includes the main types of valvular stenosis and regurgitation. Major types of valvular heart disease not included in the table include mitral valve prolapse, rheumatic heart disease and endocarditis.
In terms of treatment for pulmonary valve stenosis, valve replacement or surgical repair (depending upon whether the stenosis is in the valve or vessel) may be indicated. If the valve stenosis is of congenital origin, balloon valvuloplasty is another option, depending on the case.
Valves made from animal or human tissue (are used for valve replacement), in adults metal valves can be used.
Fetal aortic valve stenosis can be diagnosed by echocardiography before birth. The diagnostic features include a poorly contracting left ventricle, aortic valve thickening/restriction, a varying degree of left ventricular hypertrophy and abnormal Doppler flow characteristics in the left heart. There may be little or no detectable flow into or out of the left side of the heart.
There are two screening periods, one during the first trimester and the other during the second trimester. Fetal aortic stenosis is typically detected between 18 and 24 weeks gestation. This early detection is important because it allows for parents to be counseled in a timely and rational manner, allowing for discussion of prognosis and possible outcomes. Another reason for this crucial early detection is because it allows for postnatal management planning.
The Norwood procedure is a procedure to correct fetal aortic stenosis that occurs after birth. This typically consists of three surgeries creating and removing shunts. The atrial septum is removed, the aortic arch is reconstructed to remove any hypoplasia, and then the main pulmonary artery is connected into this reconstructed arch, resulting in the right ventricle ejecting directly into systemic circulation. In the end, the right ventricle is pumping blood to systemic circulation and to the lungs. However, this procedure carries a very high risk of failure and the patient will likely require a heart transplant.
Another treatment option is to correct the stenosis in utero. In this procedure, fetal positioning is crucial. It is important that the left chest is located anteriorly, and that there are no limbs between the uterine wall and the apex of the left ventricle. The LV apex needs to be within 9 cm of the abdominal wall and the left ventricle outflow track has to be parallel to the intended cannula course in order for the wire to be blindly directed at the aortic valve. A 11.5 cm long, 19-gauge cannula and stylet needle passes through the mother’s abdomen, uterine wall, and fetal chest wall into the left ventricle of the fetus. Then a 0.014 inch guide wire is passed across the stenosis aortic valve, where a balloon is inflated to stretch the aortic annulus.
An alternative to the Norwood procedure is known as the hybrid procedure, was developed in 2008. In the hybrid procedure, bilateral pulmonary artery bands are positioned to limit pulmonary flow while, at the same time, placing a stent in the ductus arteriosus to hold it open. This maintains the connection between the aorta and the systemic circulation. A balloon atrial septostomy is also done. This ensures that there is enough of a connection between the two atria of the heart to provide open blood flow and mixing of oxygen rich and poor blood This procedure spares the baby from undergoing open heart surgery until they are older. They typically come back at 4–6 months of age when they are stronger for the open heart surgery.
Tricuspid valve stenosis itself usually doesn't require treatment. If stenosis is mild, monitoring the condition closely suffices. However, severe stenosis, or damage to other valves in the heart, may require surgical repair or replacement.
The treatment is usually by surgery (tricuspid valve replacement) or percutaneous balloon valvuloplasty. The resultant tricuspid regurgitation from percutaneous treatment is better tolerated than the insufficiency occurring during mitral valvuloplasty.
In terms of treatment for tricuspid insufficiency prosthetic valve substitutes can be used, though artificial prostheses may cause thrombo‐embolic phenomena(bioprostheses may have a degeneration problem). Some evidence suggests that there are no significant differences between a mechanical or biological tricuspid valve in a recipient.
Generally, surgical treatment of tricuspid regurgitation is not indicated when it has arisen as a result of right ventricular dilatation. In such instances of secondary tricuspid regurgitation, the mainstay of therapy is medical. When left-sided heart failure is the cause, the individual is instructed to decrease intake of salt. Medications in this case may include diuretics and angiotensin-converting enzyme inhibitors.
The prognosis for pulmonary atresia varies for every child, if the condition is left uncorrected it may be fatal, but the prognosis has greatly improved over the years for those with pulmonary atresia. Some factors that affect how well the child does include how well the heart is beating, and the condition of the blood vessels that supply the heart. Most cases of pulmonary atresia can be helped with surgery, if the patient's right ventricle is exceptionally small, many surgeries will be needed in order to help stimulate normal circulation of blood to the heart.If uncorrected, babies with this type of congenital heart disease may only survive for the first few days of life. Many children with pulmonary atresia will go on to lead normal lives, though complications such as endocarditis, stroke and seizures are possible.
The evaluation of individuals with valvular heart disease who are or wish to become pregnant is a difficult issue. Issues that have to be addressed include the risks during pregnancy to the mother and the developing fetus by the presence of maternal valvular heart disease as an intercurrent disease in pregnancy.
Normal physiological changes during pregnancy require, on average, a 50% increase in circulating blood volume that is accompanied by an increase in cardiac output that usually peaks between the midportion of the second and third trimesters. The increased cardiac output is due to an increase in the stroke volume, and a small increase in heart rate, averaging 10 to 20 beats per minute. Additionally uterine circulation and endogenous hormones cause systemic vascular resistance to decrease and a disproportionately lowering of diastolic blood pressure causes a wide pulse pressure. Inferior vena caval obstruction from a gravid uterus in the supine position can result in an abrupt decrease in cardiac preload, which leads to hypotension with weakness and lightheadedness. During labor and delivery cardiac output increases more in part due to the associated anxiety and pain, as well as due to uterine contractions which will cause an increases in systolic and diastolic blood pressure.
Valvular heart lesions associated with high maternal and fetal risk during pregnancy include:
1. Severe aortic stenosis with or without symptoms
2. Aortic regurgitation with NYHA functional class III-IV symptoms
3. Mitral stenosis with NYHA functional class II-IV symptoms
4. Mitral regurgitation with NYHA functional class III-IV symptoms
5. Aortic and/or mitral valve disease resulting in severe pulmonary hypertension (pulmonary pressure greater than 75% of systemic pressures)
6. Aortic and/or mitral valve disease with severe LV dysfunction (EF less than 0.40)
7. Mechanical prosthetic valve requiring anticoagulation
8. Marfan syndrome with or without aortic regurgitation
In individuals who require an artificial heart valve, consideration must be made for deterioration of the valve over time (for bioprosthetic valves) versus the risks of blood clotting in pregnancy with mechanical valves with the resultant need of drugs in pregnancy in the form of anticoagulation.
Hypoplastic right heart syndrome is less common than hypoplastic left heart syndrome which occurs in 4 out of every 10,000 births. [3].
This rare anomaly requires prenatal diagnosis since it needs immediate and emergency treatment. Pregnant women whose pregnancy is complicated with this anomaly should be referred to a level 3 hospital with pediatric cardiology and pediatric cardiothoracic surgical team.[3]
It can be associated with aortic stenosis.
With a series of operations or even a heart transplant, a newborn can be treated but not be cured. Young individuals who have undergone reconstructive surgery must refer to a cardiologist who is experienced in congenital heart diseases, "Children with HLHS are at an increased level for developing endocarditis." Kids that have been diagnosed with HRHS must limit the physical activity they participate in to their own endurance level.
A mild diastolic murmur can be heard during auscultation caused by the blood flow through the stenotic valve. It is best heard over the left sternal border with rumbling character and tricuspid opening snap with wide-splitting S1. It may increase in intensity with inspiration (Carvallo's sign). The diagnosis will typically be confirmed by an echocardiograph, which will also allow the physician to assess its severity.
The Canadian Cardiovascular Society (CCS) recommends surgical intervention for these indications:
- Limited exercise capacity (NYHA III-IV)
- Increasing heart size (cardiothoracic ratio greater than 65%)
- Important cyanosis (resting oxygen saturation less than 90% - level B)
- Severe tricuspid regurgitation with symptoms
- Transient ischemic attack or stroke
The CCS further recommends patients who require operation for Ebstein's anomaly should be operated on by congenital heart surgeons who have substantial specific experience and success with this operation. Every effort should be made to preserve the native tricuspid valve.