Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Evaluation of a child with torticollis begins with history taking to determine circumstances surrounding birth and any possibility of trauma or associated symptoms. Physical examination reveals decreased rotation and bending to the side opposite from the affected muscle. Some say that congenital cases more often involve the right side, but there is not complete agreement about this in published studies. Evaluation should include a thorough neurologic examination, and the possibility of associated conditions such as developmental dysplasia of the hip and clubfoot should be examined. Radiographs of the cervical spine should be obtained to rule out obvious bony abnormality, and MRI should be considered if there is concern about structural problems or other conditions.
Ultrasonography is another diagnostic tool that has high frequency sound waves used to visualize the muscle tissue. A colour histogram can also be used to determine cross sectional area and thickness of the muscle.
Evaluation by an optometrist or an ophthalmologist should be considered in children to ensure that the torticollis is not caused by vision problems (IV cranial nerve , nystagmus-associated "null position," etc.).
Differential diagnosis for torticollis involves
- Cranial nerve IV palsy
- Spasmus nutans
- Sandifer syndrome
- Myasthenia gravis
Cervical dystonia appearing in adulthood has been believed to be idiopathic in nature, as specific imaging techniques most often find no specific cause.
Initially, the condition is treated with physical therapies, such as stretching to release tightness, strengthening exercises to improve muscular balance, and handling to stimulate symmetry. A TOT collar is sometimes applied. Early initiation of treatment is very important for full recovery and to decrease chance of relapse.
Spasmodic torticollis is a form of focal dystonia, a neuromuscular disorder that consists of sustained muscle contractions causing repetitive and twisting movements and abnormal postures in a single body region. There are two main ways to categorize spasmodic torticollis: age of onset, and cause. The disorder is categorized as early onset if the patient is diagnosed before the age of 27, and late onset thereafter. The causes are categorized as either primary (idiopathic) or secondary (symptomatic). Spasmodic torticollis can be further categorized by the direction and rotation of head movement.
Meige's is commonly misdiagnosed and most doctors will have not seen this condition before. Usually a neurologist who specializes in movement disorders can detect Meige's. There is no way to detect Meige's by blood test or MRI or CT scans. OMD by itself may be misdiagnosed as TMJ.
The lack of prompt response to anticholinergic drugs in cases of idiopathic Meige's syndrome is important in differentiating it from acute dystonia, which does respond to anticholinergics.
No known treatment for BPT currently exists. However, the condition it is self-limiting and resolves after about eighteen months.
The most commonly used scale to rate the severity of spasmodic torticollis is the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS). It has been shown that this rating system has widespread acceptance for use in clinical trials, and has been shown to have “good interobserver reliability.” There are three scales in the TWSTRS: torticollis severity scale, disability scale, and pain scale. These scales are used to represent the severity, the pain, and the general lifestyle of spasmodic torticollis.
Benign paroxysmal torticollis disappears in the early years of life with no medical intervention.
However, some cases of benign paroxysmal torticollis cases can evolve into benign paroxysmal vertigo of childhood, migrainous vertigo or typical migraines.
There is no cure for torsion dystonia. However, there are several medical approaches that can be taken in order to lessen the symptoms of the disease. The treatment must be patient specific, taking into consideration all of the previous and current health complications. The doctor that creates the treatment must have intimate knowledge of the patients’ health and create a treatment plan that covers all of the symptoms focusing on the most chronic areas.
The first step for most with the disorder begins with some form of physical therapy in order for the patient to gain more control over the affected areas. The therapy can help patients with their posture and gain control over the areas of their body that they have the most problems with.
The second step in the treatment process is medication. The medications focus on the chemicals released by neurotransmitters in the nervous system, which control muscle movement. The medications on the market today are anticholinergics, benzodiazepines, baclofen, dopaminergic agents/dopamine-depleting agents, and tetrabenazine. Each medication is started on a low dosage and gradually increased to higher doses as the disease progresses and the side effects are known for the individual.
A more site-specific treatment is the injection of botulinum toxin. It is injected directly into the muscle and works much the same way the oral medications do—by blocking neurotransmitters. The injections are not a treatment for the disease, but are a means to control its symptoms.
A fourth option in the treatment for the symptoms of torsion dystonia is surgery. Surgery is performed only if the patient does not respond to the oral medications or the injections. The type of surgery performed is specific to the type of dystonia that the patient has.
In some cases Meige's syndrome can be reversed when it is caused by medication. It has been theorized that it is related to cranio-mandibular orthopedic misalignment, a condition that has been shown to cause a number of other movement disorders (Parkinon's, tourettes, and torticollis). This theory is supported by the fact that the trigeminal nerve is sensory for blink reflex, and becomes hypertonic with craniomandibular dysfunction. Palliative treatments are available, such as botulinum toxin injections.
Surgery, such as the denervation of selected muscles, may also provide some relief; however, the destruction of nerves in the limbs or brain is not reversible and should be considered only in the most extreme cases. Recently, the procedure of deep brain stimulation (DBS) has proven successful in a number of cases of severe generalised dystonia. DBS as treatment for medication-refractory dystonia, on the other hand, may increase the risk of suicide in patients. However, reference data of patients without DBS therapy are lacking.
Torsion dystonia, also known as dystonia musculorum deformans, is a disease characterized by painful muscle contractions resulting in uncontrollable distortions. This specific type of dystonia is frequently found in children, with symptoms starting around the ages of 11 or 12. It commonly begins with contractions in one general area such as an arm or a leg that continue to progress throughout the rest of the body. It takes roughly 5 years for the symptoms to completely progress to a debilitating state.
Different medications are tried in an effort to find a combination that is effective for a specific person. Not all people will respond well to the same medications. Medications that have had positive results in some include: diphenhydramine, benzatropine and atropine. anti-Parkinsons agents (such as ropinirole and bromocriptine), and muscle relaxants (such as diazepam).
- Anticholinergics
Medications such as anticholinergics (benztropine), which act as inhibitors of the neurotransmitter acetylcholine, may provide some relief. In the case of an acute dystonic reaction, diphenhydramine is sometimes used (though this drug is well known as an antihistamine, in this context it is being used primarily for its anticholinergic role).. See also Procyclidine.
- Baclofen
A baclofen pump has been used to treat patients of all ages exhibiting muscle spasticity along with dystonia. The pump delivers baclofen via a catheter to the thecal space surrounding the spinal cord. The pump itself is placed in the abdomen. It can be refilled periodically by access through the skin. Baclofen can also be taken in tablet form
- Botulin toxin injection
Botulinum toxin injections into affected muscles have proved quite successful in providing some relief for around 3–6 months, depending on the kind of dystonia. Botox or Dysport injections have the advantage of ready availability (the same form is used for cosmetic surgery) and the effects are not permanent. There is a risk of temporary paralysis of the muscles being injected or the leaking of the toxin into adjacent muscle groups, causing weakness or paralysis in them. The injections have to be repeated, as the effects wear off and around 15% of recipients will develop immunity to the toxin. There is a Type A and a Type B toxin approved for treatment of dystonia; often, those that develop resistance to Type A may be able to use Type B.
- Muscle relaxants
Clonazepam, an anti-seizure medicine, is also sometimes prescribed. However, for most, their effects are limited and side-effects like mental confusion, sedation, mood swings, and short-term memory loss occur.
- Parkinsonian drugs
Dopamine agonists: One type of dystonia, dopamine-responsive dystonia, can be completely treated with regular doses of L-DOPA in a form such as Sinemet (carbidopa/levodopa). Although this does not remove the condition, it does alleviate the symptoms most of the time. (In contrast, dopamine antagonists can sometimes cause dystonia.)
Ketogenic Diet
A Ketogenic diet consisting of 70% fats (focusing on medium chain triglycerides and unsaturated fats), 20% protein and 10% carbohydrates (any sugar) has shown strong promise as a treatment for Dystonia.
Congenital fourth cranial nerve palsy can be treated with strabismus surgery, where muscle attachment sites on the globe are modified to realign the eyes. Some eye doctors prefer conservative or no management of congenital fourth nerve palsy.
Other eye doctors recommend surgery early in a patient's life to prevent the compensatory torticollis and facial asymmetry that develop with age.
Prism lenses set to make minor optical changes in the vertical alignment may be prescribed instead of or after surgery to fine-tune the correction. Prism lenses do not address torsional misalignment and this may limit their use in certain cases. An additional consideration of prism lenses is that they must be worn at all times. Prism lenses reduce vertical fusional demands by allowing the eyes to rest in their vertically misaligned state. When they are removed the patient may experience vertical diplopia they find hard to resolve due to the rested state of their eyes.
Cases of congenital fourth nerve palsy vary in magnitude and way they affect the motion of the superior oblique muscle. Therefore different surgeries are available dependent upon the type of misalignment. Sometimes surgery on more than one eye muscle is required. In some simpler, unilateral cases a single surgery may suffice. In these cases the main problem is that the inferior oblique muscle of the same eye acts unopposed by the weakened superior oblique muscle, pulling the eye up. An example of a safe and effective procedure is a disinsertion of the inferior oblique muscle to allow it to reattach itself further down the globe of the eye. This acts to 'weaken' its action and allow the eye to move back into a more neutral alignment.
In all cases of congenital fourth nerve palsy, it is important to see an experienced strabismologist about management/treatment options. A strabismologist is an ophthalmologist (eye doctor) specialising in eye movement disorders.
- "For acquired fourth nerve palsy, see fourth nerve palsy"
Congenital fourth nerve palsy is a condition present at birth characterized by a vertical misalignment of the eyes due to a weakness or paralysis of the superior oblique muscle.
Other names for fourth nerve palsy include superior oblique palsy and trochlear nerve palsy.
When looking to the right/left the nerve/muscle isn't strong enough or is too long and the eye drifts up.
A computed tomography (CT) scan is the definitive diagnostic imaging test.
X-ray of the neck often (80% of the time) shows swelling of the retropharyngeal space in affected individuals. If the retropharyngeal space is more than half of the size of the C2 vertebra, it may indicate retropharyngeal abscess.
Diagnosis is made on the basis of the association of gastro-oesophageal reflux with the characteristic movement disorder. Neurological examination is usually normal. Misdiagnosis as benign infantile spasms or epileptic seizures is common, particularly where clear signs or symptoms of gastro-oesophageal reflux are not apparent. Early diagnosis is critical, as treatment is simple and leads to prompt resolution of the movement disorder.
Diagnosis may be delayed for several months because the infant's early behavior appears to be relatively normal. Transillumination, an examination in which light is passed through body tissues, can be used to diagnose hydranencephaly. An accurate, confirmed diagnosis is generally impossible until after birth, though prenatal diagnosis using fetal ultrasonography (ultrasound) can identify characteristic physical abnormalities that exist. Through thorough clinical evaluation, via physical findings, detailed patient history, and advanced imaging techniques, such as angiogram, computerized tomography (CT scan), magnetic resonance imaging (MRI), or more rarely transillumination after birth are the most accurate diagnostic techniques. However, diagnostic literature fails to provide a clear distinction between severe obstructive hydrocephalus and hydranencephaly, leaving some children with an unsettled diagnosis.
Preliminary diagnosis may be made in utero via standard ultrasound, and can be confirmed with a standard anatomy ultrasound. This sometimes proves to provide a misdiagnosis of differential diagnoses including bilaterally symmetric schizencephaly (a less destructive developmental process on the brain), severe hydrocephalus (cerebrospinal fluid excess within the skull), and alobar holoprosencephaly (a neurological developmental anomaly). Once destruction of the brain is complete, the cerebellum, midbrain, thalami, basal ganglia, choroid plexus, and portions of the occipital lobes typically remain preserved to varying degrees. Though the cerebral cortex is absent, in most cases the fetal head remains enlarged due to the continued production by the choroid plexus of cerebrospinal fluid that is inadequately reabsorbed causing increased intracranial pressure.
Treatment of primary dystonia is aimed at reducing symptoms such as involuntary movements, pain, contracture, embarrassment, and to restore normal posture and improve the patient’s function. This treatment is therefore not neuroprotective. According to the European Federation of Neurological Sciences and Movement Disorder Society, there is no evidence-based recommendation for treating primary dystonia with antidopaminergic or anticholinergic drugs although recommendations have been based on empirical evidence. Anticholinergic drugs prove to be most effective in treating generalized and segmental dystonia, especially if dose starts out low and increases gradually. Generalized dystonia has also been treated with such muscle relaxants as the benzodiazepines. Another muscle relaxant, baclofen, can help reduce spasticity seen in cerebral palsy such as dystonia in the leg and trunk. Treatment of secondary dystonia by administering levodopa in dopamine-responsive dystonia, copper chelation in Wilson’s disease, or stopping the administration of drugs that may induce dystonia have been proven effective in a small number of cases. Physical therapy has been used to improve posture and prevent contractures via braces and casting, although in some cases, immobilization of limbs can induce dystonia, which is by definition known as peripherally induced dystonia. There are not many clinical trials that show significant efficacy for particular drugs, so medical of dystonia must be planned on a case-by-case basis. Botulinum toxin B, or Myobloc, has been approved by the US Food and Drug Administration to treat cervical dystonia due to level A evidential support by the scientific community. Surgery known as GPi DBS (Globus Pallidus Pars Interna Deep Brain Stimulation) has come to be popular in treating phasic forms of dystonia, although cases involving posturing and tonic contractions have improved to a lesser extent with this surgery. A follow-up study has found that movement score improvements observed one year after the surgery was maintained after three years in 58% of the cases. It has also been proven effective in treating cervical and cranial-cervical dystonia.
Treatment of tics present in conditions such as Tourette’s syndrome begins with patient, relative, teacher and peer education about the presentation of the tics. Sometimes, pharmacological treatment is unnecessary and tics can be reduced by behavioral therapy such as habit-reversal therapy and/or counseling. Often this route of treatment is difficult because it depends most heavily on patient compliance. Once pharmacological treatment is deemed most appropriate, lowest effective doses should be given first with gradual increases. The most effective drugs belong to the neuroleptic variety such as monoamine-depleting drugs and dopamine receptor-blocking drugs. Of the monoamine-depleting drugs, tetrabenazine is most powerful against tics and results in fewest side effects. A non-neuroleptic drug found to be safe and effective in treating tics is topiramate. Botulinum toxin injection in affected muscles can successfully treat tics; involuntary movements and vocalizations can be reduced, as well as life-threatening tics that have the potential of causing compressive myelopathy or radiculopathy. Surgical treatment for disabling Tourette’s syndrome has been proven effective in cases presenting with self-injury. Deep Brain Stimulation surgery targeting the globus pallidus, thalamus and other areas of the brain may be effective in treating involuntary and possibly life-threatening tics.
Successful treatment of the associated underlying disorder, such as GORD or hiatus hernia, may provide relief.
According to a Cochrane review of 2012, controversies remain regarding type of surgery, non-surgical intervention and age of intervention.
The aims of treatment are as follows:
The elimination of any amblyopia
A cosmetically acceptable ocular alignment
long term stability of eye position
binocular cooperation.
This remains undetermined at the present time. A recent study by Major et al. reports that:
"Prematurity, family history or secondary ocular history, perinatal or gestational complications, systemic disorders, use of supplemental oxygen as a neonate, use of systemic medications, and male sex were found to be significant risk factors for infantile esotropia."
Further recent evidence indicates that a cause for "infantile strabismus" may lie with the input that is provided to the visual cortex. In particular, neonates who suffer injuries that, directly or indirectly, perturb binocular inputs into the primary visual cortex (V1) have a far higher risk of developing strabismus than other infants.
A paper published by Eltern für Impfaufklärung, a German Anti-Vaccination activist group, cites a study by The Robert Koch Institute (RKI), claiming significant correlation between children who received Vaccinations and the onset of cause of Spine, Face & Eye Asymmetry.
There is no standard treatment for hydranencephaly. Treatment is symptomatic and supportive. Hydrocephalus may be treated with surgical treatment of a shunt, which often grants a much better prognosis and greater quality of life.
The prognosis for children with hydranencephaly is generally quite poor. Death often occurs in the first year of life, but other children may live several years.
Medical text identifies that hydranencephalic children simply have only their brain stem function remaining, thus leaving formal treatment options as symptomatic and supportive. Severe hydrocephalus causing macrocephaly, a larger than average head circumference, can easily be managed by placement of a shunt and often displays a misdiagnosis of another lesser variation of cephalic condition due to the blanketing nature of hydrocephalus. Plagiocephaly, the asymmetrical distortion of the skull, is another typical associated condition that is easily managed through positioning and strengthening exercises to prevent torticollis, a constant spasm or extreme tightening of the neck muscles.
RPA's frequently require surgical intervention. A tonsillectomy approach is typically used to access/drain the abscess, and the outcome is usually positive. Surgery in adults may be done without general anesthesia because there is a risk of abscess rupture during tracheal intubation. This could result in pus from the abscess aspirated into the lungs. In complex cases, an emergency tracheotomy may be required to prevent upper airway obstruction caused by edema in the neck.
High-dose intravenous antibiotics are required in order to control the infection and reduce the size of the abscess prior to surgery.
Chronic retropharyngeal abscess is usually secondary to tuberculosis and the patient needs to be started on anti-tubercular therapy as soon as possible.
Young–Simpson syndrome (YSS) is a rare congenital disorder with symptoms including hypothyroidism, heart defects, facial dysmorphism, cryptorchidism in males, hypotonia, mental retardation and postnatal growth retardation.
Other symptoms include transient hypothyroidism, macular degeneration and torticollis. The condition was discovered in 1987 and the name arose from the individuals who first reported the syndrome. An individual with
YSS has been identified with having symptoms to a similar syndrome known as Ohdo Blepharophimosis syndrome, showing that it is quite difficult to diagnose the correct condition based on the symptoms present. Some doctors therefore consider these syndromes to be the same.
The mode of inheritance has had mixed findings based on studies undertaken. One study showed that the parents of an individual with YSS are unrelated and phenotypically normal, indicating a sporadic mutation, thus making it difficult to base the cause of the condition on genetic makeup alone. However, another study was done of an individual with YSS who had first cousins as parents, giving the possibility of autosomal recessive inheritance.