Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
To create an acceptable aesthetic result in the correction of orbital hypertelorism, it is also important to take soft-tissue reconstruction in consideration. In this context, correction of the nasal deformities is one of the more difficult procedures. Bone and cartilage grafts may be necessary to create a nasal frame and local rotation with for example forehead flaps, or advancement flaps can be used to cover the nose.
As with almost every kind of surgery, the main complications in both treatments of hypertelorism include excessive bleeding, risk of infection and CSF leaks and dural fistulas. Infections and leaks can be prevented by giving perioperative antibiotics and identifying and closing of any dural tears. The risk of significant bleeding can be prevented by meticulous technique and blood loss is compensated by transfusions. Blood loss can also be reduced by giving hypotensive anesthesia. Rarely major eye injuries, including blindness, are seen. Visual disturbances can occur due to the eye muscle imbalance after orbital mobilization. Ptosis and diplopia can also occur postoperatively, but this usually self-corrects. A quite difficult problem to correct postoperatively is canthal drift, which can be managed best by carefully preserving the canthal tendon attachments as much as possible. Despite the extensiveness in these procedures, mortality is rarely seen in operative correction of hypertelorism.
Telecanthus is often associated with many congenital disorders. Congenital disorders such as Down syndrome, fetal alcohol syndrome, Cri du Chat syndrome, Klinefelter syndrome, Turner syndrome, Ehlers-Danlos syndrome, Waardenburg syndrome often present with prominent epicanthal fold and if these folds are nasal (most commonly are) they will cause telecanthus.
Fig of the used terms
Telecanthus (from the Greek word "tele" (τῆλε) meaning far, and the Latin word canthus, meaning either corner of the eye, where the eyelids meet) refers to increased distance between the medial canthi of the eyes, while the inter-pupillary distance is normal. This is in contrast to hypertelorism, where the inter-pupillary distance is increased.
The distance between the inner corner of the left eye and the inner corner of the right eye, is called intercanthal distance. In most people, the intercanthal distance is equal to the distance between the inner corner and the outer corner of each eye, that is, the width of the eye. The average interpupillary distance is 60–62 millimeters (mm), which corresponds to an intercanthal distance of approximately 30–31 mm. The situation, where intercanthal distance is intensely bigger than the width of the eye, is called telecanthus (tele= Greek τηλε = far, and Greek ακανθα = thorn). This can be an ethnic index or an indication for hypertelorism or hypotelorism, if it is combined with abnormal relation to the interpupillary distance (A D STEAS).
"Traumatic Telecanthus" refers to telcanthus resulting from traumatic injury to the nasal-orbital-ethmoid (NOE) complex. The diagnosis of traumatic telecanthus requires a measurement in excess of those normative values. The pathology can be either unilateral or bilateral, with the former more difficult to measure.
The main diagnostic tools for evaluating FND are X-rays and CT-scans of the skull. These tools could display any possible intracranial pathology in FND. For example, CT can be used to reveal widening of nasal bones. Diagnostics are mainly used before reconstructive surgery, for proper planning and preparation.
Prenatally, various features of FND (such as hypertelorism) can be recognized using ultrasound techniques. However, only three cases of FND have been diagnosed based on a prenatal ultrasound.
Other conditions may also show symptoms of FND. For example, there are other syndromes that also represent with hypertelorism. Furthermore, disorders like an intracranial cyst can affect the frontonasal region, which can lead to symptoms similar to FND. Therefore, other options should always be considered in the differential diagnosis.
Blepharophimosis is a congenital condition characterized by a horizontally narrow palpebral fissure. It is also part of a syndrome blepharophimosis, ptosis, and epicanthus inversus syndrome, also called blepharophimosis syndrome, which is a condition where the patient has bilateral ptosis with reduced lid size, vertically and horizontally. The nasal bridge is flat and there is hypoplastic orbital rim. Both the vertical and horizontal palpebral fissures (eyelid opening) are shortened; the eyes are also spaced more widely apart than usual, also known as telecanthus.
Vignes (1889) probably first described this entity, a dysplasia of the eyelids.
The main treatment is symptomatic, since the underlying genetic defect cannot be corrected as of 2015. Symptomatic treatment is surgical.
Blepharophimosis syndrome is an autosomal dominant characterized by blepharophimosis (horizontal shortening of the palpebral fissures), ptosis (upper eyelid drooping, usually with the characteristics of congenital ptosis), epicanthus inversus (skin folds by the nasal bridge, more prominent lower than upper lid), and telecanthus (widening of the distance between the medial orbital walls). This syndrome is caused by mutations in the FOXL2 gene, either with premature ovarian failure (BPES type I) or without (BPES type II). It may also be associated with lop ears, ectropion, hypoplasia of superior orbital rims, and hypertelorism.
Though BPES can be suggested by the presence of blepharophimosis, ptosis, and/or epicanthus inversus, it can only be definitively diagnosed by genetic testing. Other disorders that appear similar include Waardenburg syndrome and Ohdo blepharophimosis syndrome.
To correct the rather prominent hypertelorism, wide nasal root and midline cleft in FND, a facial bipartition can be performed. This surgery is preferred to periorbital box-osteotomy because deformities are corrected with a better aesthetic result.
During the operation, the orbits are disconnected from the skull and the base of the skull. However, they remain attached to the upper jaw. Part of the forehead in the centre of the face is removed (median faciotomy) in the process. Then, the orbits are rotated internally, to correct the hypertelorism. Often, a new nasal bone will have to be interpositioned, using a bone transplant.
Complications of this procedure are: bleeding, meningitis, cerebrospinal fluid leakage and blindness.
Because the variability of this disease is so great and the way that it reveals itself could be multi-faceted; once diagnosed, a multidisciplinary team is recommended to treat the disease and should include a craniofacial surgeon, ophthalmologist, pediatrician, pediatric urologist, cardiologist, pulmonologist, speech pathologist, and a medical geneticist. Several important steps must be followed, as well.
- Past medical history
- Physical examination with special attention to size and measurements of facial features, palate, heart, genitourinary system and lower respiratory system
- Eye evaluation
- Hypospadias assessment by urologist
- Laryngoscopy and chest x-ray for difficulties with breathing/swallowing
- Cleft lip/palate assessment by craniofacial surgeon
- Assessment of standard age developmental and intellectual abilities
- Anal position assessment
- Echocardiogram
- Cranial imaging
Many surgical repairs may be needed, as assessed by professionals. Furthermore, special education therapies and psychoemotional therapies may be required, as well. In some cases, antireflux drugs can be prescribed until risk of breathing and swallowing disorders are removed. Genetic counseling is highly advised to help explain who else in the family may be at risk for the disease and to help guide family planning decisions in the future.
Because of its wide variability in which defects will occur, there is no known mortality rate specifically for the disease. However, the leading cause of death for people with Opitz G/BBB syndrome is due to infant death caused by aspiration due to esophageal, pharyngeal or laryngeal defects.
Fortunately, to date there are no factors that can increase the expression of symptoms of this disease. All abnormalities and symptoms are present at birth.
Opitz G/BBB Syndrome is a rare genetic condition caused by one of two major types of mutations: MID1 mutation on the short (p) arm of the X chromosome or a mutation of the 22q11.2 gene on the 22nd chromosome. Since it is a genetic disease, it is an inherited condition. However, there is an extremely wide variability in how the disease presents itself.
In terms of prevention, several researchers strongly suggest prenatal testing for at-risk pregnancies if a MID1 mutation has been identified in a family member. Doctors can perform a fetal sex test through chromosome analysis and then screen the DNA for any mutations causing the disease. Knowing that a child may be born with Opitz G/BBB syndrome could help physicians prepare for the child’s needs and the family prepare emotionally. Furthermore, genetic counseling for young adults that are affected, are carriers or are at risk of carrying is strongly suggested, as well (Meroni, Opitz G/BBB syndrome, 2012). Current research suggests that the cause is genetic and no known environmental risk factors have been documented. The only education for prevention suggested is genetic testing for at-risk young adults when a mutation is found or suspected in a family member.
It is suggested that the diagnostic criteria for Malpuech syndrome should include cleft lip and/or palate, typical associated facial features, and at least two of the following: urogenital anomalies, caudal appendage, and growth or developmental delay.
Due to the relatively high rate of hearing impairment found with the disorder, it too may be considered in the diagnosis. Another congenital disorder, Wolf-Hirschhorn (Pitt-Rogers-Danks) syndrome, shares Malpuech features in its diagnostic criteria. Because of this lacking differentiation, karyotyping (microscopic analysis of the chromosomes of an individual) can be employed to distinguish the two. Whereas deletions in the short arm of chromosome 4 would be revealed with Wolf-Hirschhorn, a karyotype without this aberration present would favor a Malpuech syndrome diagnosis. Also, the karyotype of an individual with Malpuech syndrome alone will be normal.
Many of the congenital malformations found with Malpuech syndrome can be corrected surgically. These include cleft lip and palate, omphalocele, urogenital and craniofacial abnormalities, skeletal deformities such as a caudal appendage or scoliosis, and hernias of the umbillicus. The primary area of concern for these procedures applied to a neonate with congenital disorders including Malpuech syndrome regards the logistics of anesthesia. Methods like tracheal intubation for management of the airway during general anesthesia can be hampered by the even smaller, or maldeveloped mouth of the infant. For regional anesthesia, methods like spinal blocking are more difficult where scoliosis is present. In a 2010 report by Kiernan et al., a four-year-old girl with Malpuech syndrome was being prepared for an unrelated tonsillectomy and adenoidectomy. While undergoing intubation, insertion of a laryngoscope, needed to identify the airway for the placement of the endotracheal tube, was made troublesome by the presence of micrognathia attributed to the syndrome. After replacement with a laryngoscope of adjusted size, intubation proceeded normally. Successful general anesthesia followed.
A rare follow-up of a male with Malpuech syndrome was presented by Priolo et al. (2007). Born at term from an uneventful pregnancy and delivery, the infant underwent a surgical repair of a cleft lip and palate. No problems were reported with the procedure. A heart abnormality, atrial septal defect, was also apparent but required no intervention. At age three years, mental retardation, hyperactivity and obsessive compulsive disorder were diagnosed; hearing impairment was diagnosed at age six, managed with the use of hearing aids. Over the course of the decade that followed, a number of psychiatric evaluations were performed. At age 14, he exhibited a fear of physical contact; at age 15, he experienced a severe psychotic episode, characterized by agitation and a loss of sociosexual inhibition. This array of symptoms were treated pharmocologically (with prescription medications). He maintained a low level of mental deficiency by age 17, with moments of compulsive echolalia.
Minor physical anomalies (MPAs) are relatively minor (typically painless and, in themselves, harmless) congenital physical abnormalities consisting of features such as low-set ears, single transverse palmar crease, telecanthus, micrognathism, macrocephaly, hypotonia and furrowed tongue. While MPAs may have a genetic basis, they might also be caused by factors in the fetal environment: anoxia, bleeding, or infection. MPAs have been linked to disorders of pregnancy and are thought by some to be a marker for insults to the fetal neural development towards the end of the first trimester. Thus, in the neurodevelopmental literature, they are seen as indirect indications of inferferences with brain development.
MPAs have been studied in autism, Down syndrome, and in schizophrenia. A 2008 meta-analysis found that MPAs are significantly increased in the autistic population. A 1998 study found that 60% of its schizophrenic sample and 38% of their siblings had 6 or more MPAs (especially in the craniofacial area), while only 5% of the control group showed that many.
The most often cited MPA, high arched palate, is described in articles as a microform of a cleft palate. Cleft palates are partly attributable to hypoxia. The vaulted palate caused by nasal obstruction and consequent mouth breathing, without the lateralising effect of the tongue, can produce hypoxia at night.
Other MPAs are reported only sporadically. Capillary malformation is induced by RASA1 mutation and can be changed by hypoxia. A study in the American Journal of Psychiatry by Trixler et al.: found hemangiomas to be highly significant in schizophrenia. Exotropia is reported as having low correlation and high significance as well. It can be caused by perinatal hypoxia.
There is currently no treatment or cure for Waardenburg syndrome. The symptom most likely to be of practical importance is deafness, and this is treated as any other irreversible deafness would be. In marked cases there may be cosmetic issues. Other abnormalities (neurological, structural, Hirschsprung disease) associated with the syndrome are treated symptomatically.
Subtypes of the syndrome are traceable to different genetic variations and presentations:
Type III is also known as Klein-Waardenburg syndrome, and type IV is also known as Waardenburg-Shah syndrome.
Signs of Seaver Cassidy syndrome include several facial disorders, including hypertelorism and telecanthus, epicanthal folds, downslanting palpebral fissures, ptosis, a broad nasal bridge, malar hypoplasia, a thin upper lip, a smooth philtrum, and low-set, prominent ears. Males with Seaver Cassidy syndrome may also experience an underdeveloped shawl scrotum and cryptorchidism. Skeletal anomalies, such genu valgum, hyperextended joints, or cubitus valgus, may also be present.
Seaver Cassidy syndrome is a very rare disorder characterized by certain facial, genital, and skeletal deformities, as well as an unusual susceptibility to bleeding. Seaver Cassidy syndrome was first described in 1991 by Laurie Seaver and Suzanne Cassidy.
Because pachygyria is a structural defect no treatments are currently available other than symptomatic treatments, especially for associated seizures. Another common treatment is a gastrostomy (insertion of a feeding tube) to reduce possible poor nutrition and repeated aspiration pneumonia.
Microcephalic osteodysplastic primordial dwarfism (MOPD) type II is an autosomal multisystem disorder including severe pre- and post-natal growth retardation, microcephaly with Seckel syndrome-like facial appearance, and distinctive skeletal alterations. Usually those affected have mild to moderate mental retardation. This female child is the first born of nonconsanguineous parents at 35 weeks gestation through a cesarean section due to intrauterine growth retardation. She had a retarded psychomotor development and was repeatedly hospitalized during her first six months of life due to recurring respiratory infections. Her electroencephalography, auditory brainstem response evaluation, and chromosomal analysis were relatively normal. A brain MRI revealed thickened cerebral cortices with few and large gyri prominently in the frontal and posterior temporal regions, incomplete development of the Sylvian fissures, and dilatation of the posterior horns of the lateral ventricles (colpocephaly). Usually only mild brain malformations are associated with MOPD type II. The imaging findings of this child’s brain most likely represent diffuse pachygyria, a mild form of lissencephaly. This child’s neurodevelopmental findings were mild when compared to previous reports of a well-defined chromosome 17-linked and X-linked lissencephaly in a bedridden patient with severe developmental delays.