Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
It is phenotypically difficult to diagnose between TDO and Amelogenesis imperfecta of the hypomaturation-hypoplasia type with taurodontism (AIHHT) as they are very closely linked phenotypically during adulthood, and the only distinguishing characteristic is found during genetic analysis by Polymerase Chain Reaction (PCR) amplification. This type of test in diagnosis of TDO is only used during research or if there is a concern of genetic issue to a particular individual whose family member has been diagnosed with TDO.
TDO is a genetic based disorder it is diagnosed based on radiographic imaging, physical characteristics of the disease, and genetic testing if necessary. PCR amplification is used to check for normal and deletion allele, found in the 141 base pair allele. A four base pair deletion in exon 3 is also noted in patients with TDO; deletion in two transcription factor genes DLX-3 and DLX-7 gene (distal-less gene) that occurs by a frameshift mutation, makes this gene shorter than its normal length and non-functional. Radiographs such as cephalometric analysis or panoramic radiograph are used to detect skeletal abnormalities in TDO cases; these radiographs along with the phenotypic effects of the disease are often enough evidence for proper diagnosis. In TDO, radiologic imaging almost always shows evidence of hardening of bone tissue (sclerosis), lesions on the bone structures surrounding the teeth due to decay or trauma, or hard tissue mass. The radiographic testing is non-invasive, and involves the patient to be able to sit or stand in front of the radiographic device with their mouth closed and lips relaxed for approximately one minute. Oral abnormalities are diagnosed by a visual dental examination. A normal oral evaluation would show no signs of broken or fractured teeth, attrition of tooth enamel, no spacing between teeth, no soft tissue mass or sign of dental abscess, and a bite relationship where the mandibular (bottom) teeth interdigitate within a normal plane of 1-2mm behind and underneath the maxillary (top) teeth.
The diagnosis of IP is established by clinical findings and occasionally by corroborative skin biopsy. Molecular genetic testing of the NEMO IKBKG gene (chromosomal locus Xq28) reveals disease-causing mutations in about 80% of probands. Such testing is available clinically.
In addition, females with IP have skewed X-chromosome inactivation; testing for this can be used to support the diagnosis.
Many people in the past were misdiagnosed with a second type of IP, formerly known as IP1. This has now been given its own name - 'Hypomelanosis of Ito' (incontinentia pigmenti achromians). This has a slightly different presentation: swirls or streaks of hypopigmentation and depigmentation. It is "not" inherited and does not involve skin stages 1 or 2. Some 33–50% of patients have multisystem involvement — eye, skeletal, and neurological abnormalities. Its chromosomal locus is at Xp11, rather than Xq28.
People with ED often have certain cranial-facial features which can be distinctive: frontal bossing is common, longer or more pronounced chins are frequent, broader noses are also very common. In some types of ED, abnormal development of parts of the eye can result in dryness of the eye, cataracts, and vision defects. Professional eye care can help minimize the effects of ED on vision. Similarly, abnormalities in the development of the ear may cause hearing problems. Respiratory infections can be more common because the normal protective secretions of the mouth and nose are not present. Precautions must be taken to limit infections.
Diagnosis of otodental syndrome was established using clinical, histopathological and audiometric methodologies. In normal individuals, by the age of 2-3, radiograph images should depict any signs of premolar development. A formal diagnosis of no premolar growth can be done by age 6 in order to check for signs of otodental syndrome. Sensorineural hearing loss can be another measure for proper diagnosis as well as checking for ocular coloboma. The latter is usually noticed at an around birth.
Molecular genetic testing can aid in the diagnosis of the affected individual, which would determine if there are any abnormalities in the FGF3 gene (11q13) or the FADD gene (11q13.3). Additional tests that can help diagnose otodental syndrome are ear infection tests, hearing tests, oral examination, and eye examinations to check for the specific phenotypic associations. Due to the rarity of otodental syndrome, most symptoms are looked at on an individual basis unless multiple symptoms are all apparent at once.
There is potential for differential diagnosis due to similarities in symptoms. Other diseases that share common symptoms are chondroectodermal dysplasia, achondrodysplasia, and osteopetrosis
Treatment of manifestations: special hair care products to help manage dry and sparse hair; wigs; artificial nails; emollients to relieve palmoplantar hyperkeratosis.
In the 1960s and 1970s, several studies were conducted sponsored by the U.S. Atomic Energy Commission, with the aim of finding a link between genetics and hypodontia.
Elevated IgE is the hallmark of HIES. An IgE level greater than 2,000 IU/mL is often considered diagnostic. However, patients younger than 6 months of age may have very low to non-detectable IgE levels. Eosinophilia is also a common finding with greater than 90% of patients having eosinophil elevations greater than two standard deviations above the normal mean. Genetic testing is available for "STAT3" (Job's Syndrome), "DOCK8 (DOCK8 Immunodeficiency or DIDS)", "PGM3" (PGM3 deficiency), "SPINK5" (Netherton Syndrome - NTS), and "TYK2" genetic defects.
Sabinas brittle hair syndrome is inherited as an autosomal recessive genetic trait.
In a study by Howell et al. patients were located and studied by means of complete histories and physical examinations, analyses of serum trace metals, ceruloplasmin concentration, urine and serum amino acids, and routine metabolic urine screens. In addition, serum and urine luteinizing hormone (LH) and follicle-stimulating hormone (FSH) values were determined, and were interpreted in conjunction with total plasma estrogen, estradiol, and testosterone levels. Close examination demonstrated the scalp hairs were very brittle, coarse, wiry in texture, and broke off quite easily with mechanical trauma such as combing and brushing. Some hairs could be visualized in their follicles, which were broken off at the skin line. Most patients had accompanying hyperkeratosis (thickening of the skin) of moderate degree on exposed surfaces. Maxillary hypoplasia (midfacial retrusion) was significant in many patients. The brittle, short hair, reduced eyelashes, crowded teeth, and dull appearance created a characteristic facial appearance. Post-pubertal patients had development of secondary sexual characteristics consistent with their age, except for sparse pubic escutcheons. All cases studied demonstrated some degree of mental deficiency; I.Q.'s ranged between 50–60. A deficiency in eye–hand coordination was also noted.
Most patients with hyper IgE syndrome are treated with long-term antibiotic therapy to prevent staphylococcal infections. Good skin care is also important in patients with hyper IgE syndrome. High-dose intravenous gamma-globulin has also been suggested for the treatment of severe eczema in patients with HIES and atopic dermatitis.
The oral rehabilitation of hypodontia, especially where a significant number of teeth have not developed, is often a multidisciplinary process, involving a specialist orthodontist, a consultant in restorative dentistry, and a paediatric dentist in the earlier years. The process of treating and managing hypodontia begins in the early years of the patient's dentition where absent teeth are identified and the process of maintaining the remaining teeth begins. This is largely conducted by the paediatric dentist with orthodontic input. Once all the adult teeth have erupted the orthodontist is likely to liaise with the restorative dentist regarding optimal positioning of teeth for subsequent replacement with prosthodontic methods. This may include the utilisation of a resin-retained bridge and implants for spaces or composite resin, veneers or crowns where teeth are diminutive or misshaped.
HED2 is suspected after infancy on the basis of physical features in most affected individuals. GJB6 is the only gene known to be associated with HED2. Targeted mutation analysis for the four most common GJB6 mutations is available on a clinical basis and detects mutations in approximately 100% of affected individuals. Sequence analysis is also available on a clinical basis for those in whom none of the four known mutations is identified.
There does not yet exist a specific treatment for IP. Treatment can only address the individual symptoms.
The development of tooth buds frequently results in congenitally absent teeth (in many cases a lack of a permanent set) and/or in the growth of teeth that are peg-shaped or pointed. The enamel may also be defective. Cosmetic dental treatment is almost always necessary and children may need dentures as early as two years of age. Multiple denture replacements are often needed as the child grows, and dental implants may be an option in adolescence, once the jaw is fully grown. Nowadays the option of extracting the teeth and substituting them with dental implants is quite common. In other cases, teeth can be crowned. Orthodontic treatment also may be necessary. Because dental treatment is complex, a multi-disciplinary approach is best.
Currently there are no open research studies for otodental syndrome. Due to the rarity of this disease, current research is very limited.
The most recent research has involved case studies of the affected individuals and/or families, all of which show the specific phenotypic symptoms of otodental syndrome. Investigations on the effects of FGF3 and FADD have also been performed. These studies have shown successes in supporting previous studies that mutations to FGF3 and neighboring genes may cause the associated phenotypic abnormalities. According to recent studies involving zebrafish embryos, there is also support in that the FADD gene contributed to ocular coloboma symptoms as well.
Future research studies are required in order to better grasp the specific relationship between the gene involved and its effect on various tissues and organs such as teeth, eyes, and ear. Little is known and there is still much to be determined.
Differential diagnosis includes Angelman syndrome, Mowat–Wilson syndrome and Rett syndrome.
The Kennedy classification quantifies partial edentulism. An outline is covered at the removable partial denture article.
Carrier testing for Roberts syndrome requires prior identification of the disease-causing mutation in the family. Carriers for the disorder are heterozygotes due to the autosomal recessive nature of the disease. Carriers are also not at risk for contracting Roberts syndrome themselves. A prenatal diagnosis of Roberts syndrome requires an ultrasound examination paired with cytogenetic testing or prior identification of the disease-causing ESCO2 mutations in the family.
Diagnosis is made by showing a mutation in the TCF4 gene.
Around 50% of those affected show abnormalities on brain imaging. These include hypoplastic corpus callosum with a missing rostrum and posterior part of the splenium with bulbous caudate nuclei bulging towards the frontal horns.
Electroencephalograms show an excess of slow components.
All have low levels of immunoglobulin M (IgM) but features of an immunodeficiency are absent.
A temporal-bone CT using thin slices makes it possible to diagnose the degree of stenosis and atresia of the external auditory canal, the status of the middle ear cavity, the absent or dysplastic and rudimentary ossicles, or inner ear abnormalities such as a deficient cochlea. Two- and three-dimensional CT reconstructions with VRT and bone and skin-surfacing are helpful for more accurate staging and the three-dimensional planning of mandibular and external ear reconstructive surgery.
A few techniques are used to confirm the diagnosis in TCS.
An orthopantomogram (OPG) is a panoramic dental X-ray of the upper and lower jaw. It shows a two-dimensional image from ear to ear. Particularly, OPG facilitates an accurate postoperative follow-up and monitoring of bone growth under a mono- or double-distractor treatment. Thereby, some TCS features could be seen on OPG, but better techniques are used to include the whole spectrum of TCS abnormalities instead of showing only the jaw abnormalities.
Another method of radiographic evaluation is taking an X-ray image of the whole head. The lateral cephalometric radiograph in TCS shows hypoplasia of the facial bones, like the malar bone, mandible, and the mastoid.
Finally, occipitomental radiographs are used to detect hypoplasia or discontinuity of the zygomatic arch.
Symptoms include brittle hair, mild mental retardation and nail dysplasia. The syndrome was first observed in Sabinas, a small community in northern Mexico.
The principal biochemical features of the illness are reduced hair cystine levels, increased copper/zinc ratio, and presence of arginosuccinic acid in the blood and urine.
The key finding is brittle hair with low sulfur content, but alternating dark and light bands under polarizing microscopy, trichoschisis, and absent or defective cuticle are additional important clues for the diagnosis of trichothiodystrophy. Review of literature reveals extensive associated findings in trichothiodystrophy. Amino acid analyses of control hair when compared with those of patients with the Sabinas syndrome showed very striking differences with regard to content of sulphur amino acids. As in previous descriptions of amino acid abnormalities in the trichorrhexis nodosa of arginosuccinicaciduria, there were increases in lysine, aspartic acid, alanine, leucine, isoleucine, and tyrosine.
Trichothiodystrophy represents a central pathologic feature of a specific hair dysplasia associated with several disorders in organs derived from ectoderm and neuroectoderm. Trichothiodystrophy or TTD is a heterogeneous group of autosomal recessive disorders, characterized by abnormally sulfur deficient brittle hair and accompanied by ichthyosis and other manifestations.
Patients with trichothiodystrophy should have a thorough evaluation for other associated manifestations, including investigation of photosensitivity and DNA repair defects. Because the disease appears to be inherited in an autosomal recessive pattern, detection of low-sulfur brittle hair syndrome is also important for genetic counseling.
Hay–Wells syndrome is also known as AEC syndrome; this is short for "ankyloblepharon–ectodermal dysplasia–clefting syndrome", "ankyloblepharon filiforme adnatum–ectodermal dysplasia–cleft palate syndrome", "ankyloblepharon–ectodermal defects–cleft lip/palate (AEC) syndrome", "ankyloblepharon–ectodermal defect–cleft lip and/or palate syndrome", or "ankyloblepharon ectodermal dysplasia and clefting". Hay–Wells syndrome, or Ankyloblepharon-Ectodermal Dysplasia-Clefting (AEC) syndrome, is one of over one-hundred forms of ectodermal dysplasia; a collection of inherited diseases that cause atypical development of nails, glands, teeth, and hair. Males and females are equally affected by Hay–Wells syndrome. No demographic has been shown to be especially susceptible to the syndrome. In the United States, Hay-Wells like syndromes occur in only one in 100,000 births. Symptoms are apparent at birth, or become apparent when atypical development of teeth occurs. Major symptoms of Hay–Wells syndrome include: sparse hair and eyelashes, missing teeth, cleft palate, cleft lip with fusing of the upper and lower eyelids, and deformed nails. Therefore, a diagnosis of Hay–Wells syndrome is largely based upon the physical clinical presentation of the patient.
There is currently no cure for GAPO syndrome, but some options are available to reduce the symptoms. Nearsightedness, which affects some sufferers of the disease, can be treated by corrective lenses. Unfortunately, optic atrophy as a result of degradation of the optic nerve (common with GAPO syndrome) cannot be corrected. Corticosteroids have been proposed as a treatment for optic nerve atrophy, but their effectiveness is disputed, and no steroid based treatments are currently available.
Cytogenetic preparations that have been stained by either Giemsa or C-banding techniques will show two characteristic chromosomal abnormalities. The first chromosomal abnormality is called premature centromere separation (PCS) and is the most likely pathogenic mechanism for Roberts syndrome. Chromosomes that have PCS will have their centromeres separate during metaphase rather than anaphase (one phase earlier than normal chromosomes). The second chromosomal abnormality is called heterochromatin repulsion (HR). Chromosomes that have HR experience separation of the heterochromatic regions during metaphase. Chromosomes with these two abnormalities will display a "railroad track" appearance because of the absence of primary constriction and repulsion at the heterochromatic regions. The heterochromatic regions are the areas near the centromeres and nucleolar organizers. Carrier status cannot be determined by cytogenetic testing. Other common findings of cytogenetic testing on Roberts syndrome patients are listed below.
- Aneuploidy- the occurrence of one or more extra or missing chromosomes
- Micronucleation- nucleus is smaller than normal
- Multilobulated Nuclei- the nucleus has more than one lobe