Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In general, the Duke criteria should be fulfilled in order to establish the diagnosis of endocarditis. The blood tests C reactive protein (CRP) and procalcitonin have not been found to be particularly useful in helping make or rule out the diagnosis.
As the Duke criteria rely heavily on the results of echocardiography, research has addressed when to order an echocardiogram by using signs and symptoms to predict occult endocarditis among patients with intravenous drug abuse and among non drug-abusing patients. Unfortunately, this research is over 20 years old and it is possible that changes in the epidemiology of endocarditis and bacteria such as staphylococci make the following estimates incorrect.
The transthoracic echocardiogram has a sensitivity and specificity of approximately 65% and 95% if the echocardiographer believes there is 'probable' or 'almost certain' evidence of endocarditis.
Diagnosis of subacute bacterial endocarditis can be done by collecting three blood culture specimens over a 24-hour period for analysis, also it can usually be indicated by the existence of:
- Osler's nodes
- Roth's spots
- Nail clubbing
The standard treatment is with a minimum of four weeks of high-dose intravenous penicillin with an aminoglycoside such as gentamicin.
The use of high-dose antibiotics is largely based upon animal models.
Leo Loewe of Brooklyn Jewish Hospital was the first to successfully treat subacute bacterial endocarditis with penicillin. Loewe reported at the time seven cases of subacute bacterial endocarditis in 1944.
Due to the non-invasive nature of NBTE, clinical examination may or may not reveal a new murmur.
An embolic stroke may be the first feature to suggest the diagnosis of NBTE. An echocardiograph may be used to further assess for valvular lesions.
There are several methods to diagnose meningeal syphilis. One of the most common ways include visualizing the organisms by immunofluorescence and dark field microscopy. Dark field microscopy initially had the finding that the spirochete has a corkscrew appearance and that it is spirillar and gram (-) bacteria. Another method would also be through the screening test and serology. Serology includes two types of antibody test: Nontreponemal antibody test and Treponemal antibody test (specific test). The Nontreponemal antibody test screens with VDRL (Venereal Disease Research Lab) and RPR (Rapid Plasma Reagin). The Treponemal antibody test (specific test) confirms with FTA-ABS (Fluorescent treponemal antibody-absorption). Brain imaging and MRI scans may be used when diagnosing patients; however, they do not prove to be as effective as specific tests. Specific tests for treponemal antibody are typically more expensive because the earliest anitbodies bind to spirochetes. These tests are usually more specific and remain positive in patients with other treponemal diseases.
Infective endocarditis is an infection of the inner surface of the heart, usually the valves. Symptoms may include fever, small areas of bleeding into the skin, heart murmur, feeling tired, and low red blood cells. Complications may include valvular insufficiency, heart failure, stroke, and kidney failure.
The cause is typically a bacterial infection and less commonly a fungal infection. Risk factors include valvular heart disease including rheumatic disease, congenital heart disease, artificial valves, hemodialysis, intravenous drug use, and electronic pacemakers. The bacterial most commonly involved are streptococci or staphylococci. Diagnosis is suspected based on symptoms and supported by blood cultures or ultrasound.
The usefulness of antibiotics following dental procedures for prevention is unclear. Some recommend them in those at high risk. Treatment is generally with intravenous antibiotics. The choice of antibiotics is based on the blood cultures. Occasionally heart surgery is required.
The number of people affected is about 5 per 100,000 per year. Rates, however, vary between regions of the world. Males are affected more often than females. The risk of death among those infected is about 25%. Without treatment it is almost universally fatal.
Nonbacterial thrombotic endocarditis (NBTE) is most commonly found on previously undamaged valves. As opposed to infective endocarditis, the vegetations in NBTE are small, sterile, and tend to aggregate along the edges of the valve or the cusps. Also unlike infective endocarditis, NBTE does not cause an inflammation response from the body. NBTE usually occurs during a hypercoagulable state such as system-wide bacterial infection, or pregnancy, though it is also sometimes seen in patients with venous catheters. NBTE may also occur in patients with cancers, particularly mucinous adenocarcinoma where Trousseau syndrome can be encountered. Typically NBTE does not cause many problems on its own, but parts of the vegetations may break off and embolize to the heart or brain, or they may serve as a focus where bacteria can lodge, thus causing infective endocarditis.
Another form of sterile endocarditis is termed Libman–Sacks endocarditis; this form occurs more often in patients with lupus erythematosus and is thought to be due to the deposition of immune complexes. Like NBTE, Libman-Sacks endocarditis involves small vegetations, while infective endocarditis is composed of large vegetations. These immune complexes precipitate an inflammation reaction, which helps to differentiate it from NBTE. Also unlike NBTE, Libman-Sacks endocarditis does not seem to have a preferred location of deposition and may form on the undersurfaces of the valves or even on the endocardium.
The most popular treatment forms for any type of syphilis uses penicillin, which has been an effective treatment used since the 1940s.
Other forms also include Benzathine penicillin, which is usually used for primary and secondary syphilis (it has no resistance to penicillin however). Benzathine penicillin is used for long acting form, and if conditions worsen, penicillin G is used for late syphilis.
Grossly, vegetations form along lines of valve closure and are generally symmetric with a smooth or verrucoid (warty) texture. Histologically, lesions are composed of fibrin (eosinophilic) and platelets but, unlike bacterial etiologies, contain little evidence of PMNs, microorganisms or inflammation.
Bacteremia is most commonly diagnosed by blood culture, in which a sample of blood drawn from the vein by needle puncture is allowed to incubate with a medium that promotes bacterial growth. If bacteria are present in the bloodstream at the time the sample is obtained, the bacteria will multiply and can thereby be detected.
Any bacteria that incidentally find their way to the culture medium will also multiply. For example, if the skin is not adequately cleaned before needle puncture, contamination of the blood sample with normal bacteria that live on the surface of the skin can occur. For this reason, blood cultures must be drawn with great attention to sterile process. The presence of certain bacteria in the blood culture, such as S"taphylococcus aureus", "Streptococcus pneumoniae", and "Escherichia coli" almost never represent a contamination of the sample. On the other hand, contamination may be more highly suspected if organisms like "Staphylococcus epidermidis" or "Propionibacterium acnes" grow in the blood culture.
Two blood cultures drawn from separate sites of the body are often sufficient to diagnose bacteremia. Two out of two cultures growing the same type of bacteria usually represents a real bacteremia, particularly if the organism that grows is not a common contaminant. One out of two positive cultures will usually prompt a repeat set of blood cultures to be drawn to confirm whether a contaminant or a real bacteremia is present. The patient's skin is typically cleaned with an alcohol-based product prior to drawing blood to prevent contamination. Blood cultures may be repeated at intervals to determine if persistent — rather than transient — bacteremia is present.
Prior to drawing blood cultures, a thorough patient history should be taken with particular regard to presence of both fevers and chills, other focal signs of infection such as in the skin or soft tissue, a state of immunosuppression, or any recent invasive procedures.
Ultrasound of the heart is recommended in all those with bacteremia due to "Staphylococcus aureus" to rule out infectious endocarditis.
The CDC states that PCR testing from a single blood draw is not sufficiently sensitive for "B." "henselae" testing, and can result in high false negative rates due to a small sample volume and levels below the limit of molecular detection.
"Bartonella" spp. are fastidious, slow-growing bacteria that are difficult to grow using traditional solid agar plate culture methods due to complex nutritional requirements and potentially a low number of circulating bacteria. This conventional method of culturing "Bartonella" spp. from blood inoculates plated directly onto solid agar plates requires an extended incubation period of 21 days due to the slow growth rate.
"Bartonella" growth rates improve when cultured in an enrichment inoculation step in a liquid insect-based medium such as "Bartonella" α-Proteobacteria Growth Medium (BAPGM) or Schneider’s Drosophila-based insect powder medium. Several studies have optimized the growing conditions of "Bartonella" spp. cultures in these liquid media, with no change in bacterial protein expressions or host interactions "in vitro". Insect-based liquid media supports the growth and co-culturing of at least seven "Bartonella" species, reduces bacterial culturing time and facilitates PCR detection and isolation of "Bartonella" spp. from animal and patient samples. Research shows that DNA may be detected following direct extraction from blood samples and become negative following enrichment culture, thus PCR is recommended after direct sample extraction and also following incubation in enrichment culture. Several studies have successfully optimized sensitivity and specificity by using PCR amplification (pre-enrichment PCR) and enrichment culturing of blood draw samples, followed by PCR (post-enrichment PCR) and DNA sequence identification.
Cat-scratch disease is characterized by granulomatous inflammation on histological examination of the lymph nodes. Under the microscope, the skin lesion demonstrates a circumscribed focus of necrosis, surround by histiocytes, often accompanied by multinucleated giant cells, lymphocytes, and eosinophils. The regional lymph nodes demonstrate follicular hyperplasia with central stellate necrosis with neutrophils, surrounded by palisading histiocytes (suppurative granulomas) and sinuses packed with monocytoid B cells, usually without perifollicular and intrafollicular epithelioid cells. This pattern, although typical, is only present in a minority of cases.
Laboratory testing includes white blood cell count, ESR, and CRP. These values are usually elevated in those with septic arthritis; however, these can be elevated by other infections or inflammatory conditions and are, therefore, nonspecific. Procalcitonin may be more useful than CRP.
Blood cultures can be positive in up to half of patients with septic arthritis.
Dark ground microscopy of serous fluid from a chancre may be used to make an immediate diagnosis. Hospitals do not always have equipment or experienced staff members, and testing must be done within 10 minutes of acquiring the sample. Sensitivity has been reported to be nearly 80%; therefore the test can only be used to confirm a diagnosis, but not to rule one out. Two other tests can be carried out on a sample from the chancre: direct fluorescent antibody testing and nucleic acid amplification tests. Direct fluorescent testing uses antibodies tagged with fluorescein, which attach to specific syphilis proteins, while nucleic acid amplification uses techniques, such as the polymerase chain reaction, to detect the presence of specific syphilis genes. These tests are not as time-sensitive, as they do not require living bacteria to make the diagnosis.
Imaging such as x-ray, CT,MRI, orultrasoundarenonspecific. They can help determine areas of inflammation but cannot confirm septic arthritis.
When septic arthritis is suspected,x-raysshould generally be taken. This is used to assess for involvement of surrounding structures such as bone and also for comparison purposes when future x-rays are taken.While x-rays may not be helpful early in the diagnosis/treatment, they may show subtle increase in joint space and tissue swelling. Later findings include joint space narrowing due to destruction of the joint.
Ultrasoundcan be done and is effective at detecting joint effusions.
CTandMRI are not required for diagnosis but can be used if diagnosis is unclear or in joints that are hard to examine (ie.sacroiliacorhip joints). They can can help assess for inflammation/infection in or about the joint (ie.osteomyeltis).
Diagnosis of IIA is based on finding an intracranial aneurysm on vascular imaging in the presence of predisposing infectious conditions. Positive bacterial cultures from blood or the infected aneurysm wall itself may confirm the diagnosis, however blood cultures are often negative. Other supporting findings include leukocytosis, an elevated erythrocyte sedimentation rate and elevated C-reactive protein in blood.
Intensive cardiac care and immunosuppressives including corticosteroids are helpful in the acute stage of the disease. Chronic phase has, mainly debility control and supportive care options.
Blood tests are divided into nontreponemal and treponemal tests.
Nontreponemal tests are used initially, and include venereal disease research laboratory (VDRL) and rapid plasma reagin (RPR) tests. False positives on the nontreponemal tests can occur with some viral infections, such as varicella (chickenpox) and measles. False positives can also occur with lymphoma, tuberculosis, malaria, endocarditis, connective tissue disease, and pregnancy.
Because of the possibility of false positives with nontreponemal tests, confirmation is required with a treponemal test, such as treponemal pallidum particle agglutination (TPHA) or fluorescent treponemal antibody absorption test (FTA-Abs). Treponemal antibody tests usually become positive two to five weeks after the initial infection. Neurosyphilis is diagnosed by finding high numbers of leukocytes (predominately lymphocytes) and high protein levels in the cerebrospinal fluid in the setting of a known syphilis infection.
The Warthin–Starry stain can be helpful to show the presence of "B. henselae", but is often difficult to interpret. "B. henselae" is difficult to culture and can take 2–6 weeks to incubate. The best diagnostic method currently available is polymerase chain reaction, which has a sensitivity of 43-76% and a specificity (in one study) of 100%.
In eosinophilic myocarditis, echocardiography typically gives non-specific and only occasional findings of endocardium thickening, left ventricular hypertrophy, left ventricle dilation, and involvement of the mitral and/or tricuspid valves. However, in acute necrotizing eosinophilic myocarditis, echocardiography usually gives diagnostically helpful evidence of a non-enlarged heart with a thickened and poorly contracting left ventricle. Gadolinium-based cardiac magnetic resonance imaging is the most useful non-invasive procedure for diagnosing eosinophilic myocarditis. It supports this diagnosis if it shows at least two of the following abnormalities: a) an increased signal in T2-weighted images; b) an increased global myocardial early enhancement ratio between myocardial and skeletal muscle in enhanced T1 images and c) one or more focal enhancements distributed in a non-vascular pattern in late enhanced T1-weighted images. Additionally, and unlike in other forms of myocarditis, eosinophilic myocarditis may also show enhanced gadolinium uptake in the sub-endocardium. However, the only definitive test for eosinophilic myocarditis in cardiac muscle biopsy showing the presence of eosinophilic infiltration. Since the disorder may be patchy, multiple tissue samples taken during the procedure improve the chances of uncovering the pathology but in any case negative results do not exclude the diagnosis.
The prognosis of eosinophilic myocarditis is anywhere from rapidly fatal to extremely chronic or non-fatal. Progression at a moderate rate over many months to years is the most common prognosis. In addition to the speed of inflammation-based heart muscle injury, the prognosis of eosinophilc myocarditis may be dominated by that of its underlying cause. For example, an underlying malignant cause for the eosinophilia may be survival-limiting.
The pathology is the same as nonbacterial thrombotic endocarditis except focal necrosis with hematoxylin bodies can be found only in Libman–Sacks endocarditis.
The presence of bacteria in the blood almost always requires treatment with antibiotics. This is because there are high mortality rates from progression to sepsis if antibiotics are delayed.
The treatment of bacteremia should begin with empiric antibiotic coverage. Any patient presenting with signs or symptoms of bacteremia or a positive blood culture should be started on intravenous antibiotics. The choice of antibiotic is determined by the most likely source of infection and by the characteristic organisms that typically cause that infection. Other important considerations include the patient's past history of antibiotic use, the severity of the presenting symptoms, and any allergies to antibiotics. Empiric antibiotics should be narrowed, preferably to a single antibiotic, once the blood culture returns with a particular bacteria that has been isolated.