Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Orofaciodigital syndrome type 1 is diagnosed through genetic testing. Some symptoms of Orofaciodigital syndrome type 1 are oral features such as, split tongue, benign tumors on the tongue, cleft palate, hypodontia and other dental abnormalities. Other symptoms of the face include hypertelorism and micrognathia. Bodily abnormalities such as webbed, short, joined, or abnormally curved fingers and toes are also symptoms of Orofaciodigital syndrome type 1. The most frequent symptoms are accessory oral frenulum, broad alveolar ridges, frontal bossing, high palate, hypertelorism, lobulated tongue, median cleft lip, and wide nasal bridge. Genetic screening of the OFD1 gene is used to officially diagnose a patient who has the syndrome, this is detected in 85% of individuals who are suspected to have Orofaciodigital syndrome type 1.
Genetic testing is necessary to identify the syndrome. The DNA test is necessary sometimes because symptoms may not be sufficient to definitely diagnose this condition.
Orofaciodigital syndrome type 1 can be treated with reconstructive surgery or the affected parts of the body. Surgery of cleft palate, tongue nodules, additional teeth, accessory frenulae, and orthodontia for malocclusion. Routine treatment for patients with renal disease and seizures may also be necessary. Speech therapy and special education in the later development may also be used as management.
The key problem is the early fusion of the skull, which can be corrected by a series of surgical procedures, often within the first three months after birth. Later surgeries are necessary to correct respiratory and facial deformities.
Between this condition and NF-1 an important difference is the absence of tumor growths (Lisch nodules and neurofibromas which are common in NF-1) in LS.
The symptoms of Legius syndrome and NF-1 are very similar, this is the reason why the two are easily confused. A genetic test is often the only way to make sure a person has LS and not NF-1,
the similarity of symptoms stem from the fact that the different genes affected in the two syndromes code for proteins that carry out a similar task in the same reaction pathway.
1. Clinical Genetics and Genetic Testing
Genetic testing is necessary to confirm the diagnosis of PMS. A prototypical terminal deletion of 22q13 can be uncovered by karyotype analysis, but many terminal and interstitial deletions are too small to detect with this method. Chromosomal microarray should be ordered in children with suspected developmental delays or ASD. Most cases will be identified by microarray; however, small variations in genes might be missed. The falling cost for whole exome sequencing may replace DNA microarray technology for candidate gene evaluation. Biological parents should be tested with fluorescence "in situ" hybridization (FISH) to rule out balanced translocations or inversions. Balanced translocation in a parent increases the risk for recurrence and heritability within families (figure 3).
Clinical genetic evaluations and dysmorphology exams should be done to evaluate growth, pubertal development, dysmorphic features (table 1) and screen for organ defects (table 2)
2. Cognitive and Behavioral Assessment
All patients should undergo comprehensive developmental, cognitive and behavioral assessments by clinicians with experience in developmental disorders. Cognitive evaluation should be tailored for individuals with significant language and developmental delays. All patients should be referred for specialized speech/language, occupational and physical therapy evaluations.
3. Neurological Management
Individuals with PMS should be followed by a pediatric neurologist regularly to monitor motor development, coordination and gait, as well as conditions that might be associated with hypotonia. Head circumference should be performed routinely up until 36 months. Given the high rate of seizure disorders (up to 41% of patients) reported in the literature in patients with PMS and its overall negative impact on development, an overnight video EEG should be considered early to rule out seizure activity. In addition, a baseline structural brain MRI should be considered to rule out the presence of structural abnormalities.
4. Nephrology
All patients should have a baseline renal and bladder ultrasonography and a voiding cystourethrogram should be considered to rule out structural and functional abnormalities. Renal abnormalities are reported in up to 38% of patients with PMS. Vesicouretral reflux, hydronephrosis, renal agenesis, dysplasic kidney, polycystic kidney and recurrent urinary tract infections have all been reported in patients with PMS.
5. Cardiology
Congenital heart defects (CHD) are reported in samples of children with PMS with varying frequency (up to 25%)(29,36). The most common CHD include tricuspid valve regurgitation, atrial septal defects and patent ductus arteriousus. Cardiac evaluation, including echocardiography and electrocardiogram, should be considered.
6. Gastroenterology
Gastrointestinal symptoms are common in individuals with PMS. Gastroesophageal reflux, constipation, diarrhea and cyclic vomiting are frequently described.
Table 3: Clinical Assessment Recommendations in Phelan McDermid Syndrome.
Children with Pfeiffer syndrome types 2 and 3 "have a higher risk for neurodevelopmental disorders and a reduced life expectancy" than children with Pfeiffer syndrome type 1, but if treated, favorable outcomes are possible. In severe cases, respiratory and neurological complications often lead to early death.
Diagnosis of Bruck syndrome must distinguish the association of contractures and skeletal fragility. Ultrasound is used for prenatal diagnosis. The diagnosis of a neonate bears resemblance to arthrogryposis multiplex congenital, and later in childhood to osteogenesis imperfecta.
It has several different types:
- type 1 - Apert syndrome
- type 2 - Crouzon syndrome
- type 3 - Saethre-Chotzen syndrome
- type 5 - Pfeiffer syndrome
A related term, "acrocephalopolysyndactyly" (ACPS), refers to the inclusion of polydactyly to the presentation. It also has multiple types:
- type 1 - Noack syndrome; now classified with Pfeiffer syndrome
- type 2 - Carpenter syndrome
- type 3 - Sakati-Nyhan-Tisdale syndrome
- type 4 - Goodman syndrome; now classified with Carpenter syndrome
- type 5 - Pfeiffer syndrome
It has been suggested that the distinction between "acrocephalosyndactyly" versus "acrocephalopolysyndactyly" should be abandoned.
Acrocephalosyndactylia (or acrocephalosyndactyly) is the common presentation of craniosynostosis and syndactyly.
Synpolydactyly is a joint presentation of syndactyly (fusion of digits) and polydactyly (production of supernumerary digits). This is often a result of a mutation in the HOX D13 gene.
Types include:
The Wassel classification is the most widely used classification of radial polydactyly, based upon the most proximal level of skeletal duplication. The most common type is Wassel 4 (about 50% of such duplications) followed by Wassel 2 (20%) and Wassel 6 (12%).
Classification is performed by using x-ray imaging to see the bone structures.
The RASopathies are developmental syndromes caused by germline mutations (or in rare cases by somatic mosaicism) in genes that alter the Ras subfamily and mitogen-activated protein kinases that control signal transduction, including:
- Capillary malformation-AV malformation syndrome
- Autoimmune lymphoproliferative syndrome
- Cardiofaciocutaneous syndrome
- Hereditary gingival fibromatosis type 1
- Neurofibromatosis type 1
- Noonan syndrome
- Costello syndrome, Noonan-like
- Legius syndrome, Noonan-like
- Noonan syndrome with multiple lentigines, formerly called LEOPARD syndrome, Noonan-like
Diagnosis is visual with measurement of spot size. The number of spots can have clinical significance for diagnosis of associated disorders such as Neurofibromatosis type I. Greater than or equal to 6 spots of at least 5mm in diameter in pre-pubertal children and at least 15mm in post-pubertal individuals is one of the major diagnostic criteria for NF1.
Café au lait spots can be removed with lasers. Results are variable as the spots are often not completely removed or can come back after treatment. Often, a test spot is treated first to help predict the likelihood of treatment success.
Until more molecular and clinical studies are performed there will be no way to prevent the disease. Treatments are directed towards alleviating the symptoms. To treat the disease it is crucial to diagnose it properly. Orthopedic therapy and fracture management are necessary to reduce the severity of symptoms. Bisphosphonate drugs are also an effective treatment.
This includes Chediak-Higashi syndrome and Elejalde syndrome (neuroectodermal melanolysosomal disease).
In terms of diagnosis for this condition, the following methods/tests are available:
- Endoscopic
- CT scan
- Serum endocrine autoantibody screen
- Histologic test
Conditions which may be confused with NF include, LEOPARD syndrome, and Legius syndrome.
The true prevalence of PMS has not been determined. More than 1200 people have been identified worldwide according the Phelan-McDermid Syndrome Foundation. However, it is believed to be underdiagnosed due to inadequate genetic testing and lack of specific clinical features. It is known to occur with equal frequency in males and females. Studies using chromosomal microarray for diagnosis indicate that at least 0.5% of cases of ASD can be explained by mutations or deletions in the "SHANK3" gene. In addition when ASD is associated with ID, "SHANK3" mutations or deletions have been found in up to 2% of individuals.
Oculocutaneous Albinism Type I or –Type 1A (OCA1A) is an autosomal recessive skin disease associated with albinism. This type of albinism is caused when the gene OCA1 does not function properly.
The location of OCA1 may be written as "11q1.4-q2.1", meaning it is on chromosome 11, long arm, somewhere in the range of band 1, sub-band 4, and band 2, sub-band 1.
Type 2 appears when a child is around 18 months of age and in considered milder than Type 1 but still severe. Symptoms include:
- Symptoms similar to Type 1 but milder and progress more slowly.
Medical diagnosis of CGL can be made after observing the physical symptoms of the disease: lipoatrophy (loss of fat tissues) affecting the trunk, limbs, and face; hepatomegaly; acromegaly; insulin resistance; and high serum levels of triglycerides. Genetic testing can also confirm the disease, as mutations in the AGPAT2 gene is indicative of CGL1, a mutation in the BSCL2 gene is indicative of CGL2, and mutations in the CAV1 and PTRF genes are indicative of CGL3 and CGL4 respectively. Physical diagnosis of CGL is easier, as CGL patients are recognizable from birth, due to their extreme muscular appearance, which is caused by the absence of subcutaneous fat.
CGL3 patients have serum creatine kinase concentrations much higher than normal (2.5 to 10 times the normal limit). This can be used to diagnose type 3 patients and differentiate them from CGL 1 and 2 without mapping their genes. Additionally, CGL3 patients have low muscle tone when compared with other CGL patients.
Diagnosis: A special urine test is available to check for any partially broken-down-sugars. If they are present, a skin or blood sample will be taken to test for below-normal amounts of alpha-fucosidase.
- Fucosidosis is an autosomal recessive disorder, which means that both parents have to have the mutation and pass it on to the child. When both parents have the mutation, there is a 25% chance of each child having fucosidosis.