Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Blurry vision may result from any number of conditions not necessarily related to refractive errors. The diagnosis of a refractive error is usually confirmed by an eye care professional during an eye examination using a large number of lenses of different optical powers, and often a retinoscope (a procedure entitled "retinoscopy") to measure objectively in which the patient views a distant spot while the clinician changes the lenses held before the patient's eye and watches the pattern of reflection of a small light shone on the eye. Following that "objective refraction" the clinician typically shows the patient lenses of progressively higher or weaker powers in a process known as "subjective refraction".
Cycloplegic agents are frequently used to more accurately determine the amount of refractive error, particularly in children
An automated refractor is an instrument that is sometimes used in place of retinoscopy to objectively estimate a person's refractive error. Shack–Hartmann wavefront sensor and its inverse can also be used to characterize eye aberrations in a higher level of resolution and accuracy.
Vision defects caused by refractive error can be distinguished from other problems using a pinhole occluder, which will improve vision only in the case of refractive error.
Some suggest that more time spent outdoors during childhood is effective for prevention.
Various methods have been employed in an attempt to decrease the progression of myopia, although studies show mixed results. Many myopia treatment studies have a number of design drawbacks: small numbers, lack of adequate control group, and failure to mask examiners from knowledge of treatments used.
A diagnosis of myopia is typically made by an eye care professional, usually an optometrist or ophthalmologist. During a refraction, an autorefractor or retinoscope is used to give an initial objective assessment of the refractive status of each eye, then a phoropter is used to subjectively refine the patient's eyeglass prescription. Other types of refractive error are hyperopia, astigmatism, and presbyopia.
Hyperopia is typically classified according to clinical appearance, its severity, or how it relates to the eye's accommodative status.
There are three clinical categories of hyperopia.
- Simple hyperopia
- Pathological hyperopia
- Functional hyperopia
There are also three categories severity:
- Low
- Moderate
- High
Other common types of refractive errors are near-sightedness, astigmatism, and presbyopia.
A determination of the prevalence of anisometropia has several difficulties. First of all, the measurement of refractive error may vary from one measurement to the next. Secondly, different criteria have been employed to define anisometropia, and the boundary between anisometropia and isometropia depend on their definition.
Several studies have found that anisometropia occurs more frequently and tends to be more severe for persons with high ametropia, and that this is particularly true for myopes. Anisometropia follows a U-shape distribution according to age: it is frequent in infants aged only a few weeks, is more rare in young children, comparatively more frequent in teenagers and young adults, and more prevalent after presbyopia sets in, progressively increasing into old age.
One study estimated that 6% of those between the ages of 6 and 18 have anisometropia.
Notwithstanding research performed on the biomechanical, structural and optical characteristics of anisometropic eyes, the underlying reasons for anisometropia are still poorly understood.
Anisometropic persons who have strabismus are mostly far-sighted, and almost all of these have (or have had) esotropia. However, there are indications that anisometropia influences the long-term outcome of a surgical correction of an inward squint, and vice versa. More specifically, for patients with esotropia who undergo strabismus surgery, anisometropia may be one of the risk factors for developing consecutive exotropia and poor binocular function may be a risk factor for anisometropia to develop or increase.
How refractive errors are treated or managed depends upon the amount and severity of the condition. Those who possess mild amounts of refractive error may elect to leave the condition uncorrected, particularly if the patient is asymptomatic. For those who are symptomatic, glasses, contact lenses, refractive surgery, or a combination of the three are typically used.
Strategies being studied to slow worsening include adjusting working conditions, increasing the time children spend outdoors, and special types of contact lenses. In children special contact lenses appear to slow worsening of nearsightedness.
A diagnosis of far-sightedness can be made via a slit lamp test which examines the cornea, conjunctiva, and iris.
In severe cases of hyperopia from birth, the brain has difficulty in merging the images that each individual eye sees. This is because the images the brain receives from each eye are always blurred. A child with severe hyperopia can never see objects in detail. If the brain never learns to see objects in detail, then there is a high chance of one eye becoming dominant. The result is that the brain will block the impulses of the non-dominant eye. In contrast, the child with myopia can see objects close to the eye in detail and does learn at an early age to see detail in objects.
Quantitative comparisons between different eyes and conditions are usually made using RMS (root mean square). To measure RMS for each type of aberration involves squaring the difference between the aberration and mean value and averaging it across the pupil area. Different kinds of aberrations may have equal RMS across the pupil but have different effects on vision, therefore, RMS error is unrelated to visual performance. The majority of eyes have total RMS values less than 0.3 µm.
The most common method of classifying the shapes of aberration maps is to consider each map as the sum of fundamental shapes or basis functions. One popular set of basis functions are the Zernike polynomials. Each aberration may be positive or negative in value and induces predictable alterations in the image quality.
Because there is no limit to the number of terms that may be used by Zernike polynomials, vision scientists use the first 15 polynomials, based on the fact that they are enough to obtain a highly accurate description of the most common aberrations found in human eye. Among these the most important Zernike coefficients affecting visual quality are coma, spherical aberration, and trefoil.
Zernike polynomials are usually expressed in terms of polar coordinates (ρ,θ), where ρ is radial coordinate and θ is the angle. The advantage of expressing the aberrations in terms of these polynomials includes the fact that the polynomials are independent of one another. For each polynomial the mean value of the aberration across the pupil is zero and the value of the coefficient gives the RMS error for that particular aberration (i.e. the coefficients show the relative contribution of each Zernike mode to the total wavefront error in the eye). However these polynomials have the disadvantage that their coefficients are only valid for the particular pupil diameter they are determined for.
In each Zernike polynomial formula_1, the subscript n is the order of aberration, all the Zernike polynomials in which n=3 are called third-order aberrations and all the polynomials with n=4, fourth order aberrations and so on. formula_2 and formula_3 are usually called secondary Astigmatism and should not cause confusion. The superscript m is called the angular frequency and denotes the number of times the Wavefront pattern repeats itself.
List of Zernike modes and their common names:
Refractive surgery causes only minimal size differences, similar to contact lenses. In a study performed on 53 children who had amblyopia due to anisometropia, surgical correction of the anisometropia followed by strabismus surgery if required led to improved visual acuity and even to stereopsis in many of the children ("see:" Refractive surgery#Children).
During an eye examination, a test such as cover testing or the Hirschberg test is used in the diagnosis and measurement of strabismus and its impact on vision. Retinal birefringence scanning can be used for screening of young children for eye misaligments.
Several classifications are made when diagnosing strabismus.
Corrective lenses provide a range of vision correction, some as high as +4.0 diopter. Some with presbyopia choose varifocal or bifocal lenses to eliminate the need for a separate pair of reading glasses; specialized preparations of varifocals or bifocals usually require the services of an optometrist. Some newer bifocal or varifocal spectacle lenses attempt to correct both near and far vision with the same lens.
Contact lenses can also be used to correct the focusing loss that comes along with presbyopia. Multifocal contact lenses can be used to correct vision for both the near and the far. Some people choose contact lenses to correct one eye for near and one eye for far with a method called monovision.
Low order aberrations (hyperopia, Myopia and regular astigmatism), are correctable by eyeglasses, soft contact lenses and refractive surgery. Neither spectacles nor soft contact lenses nor routine keratorefractive surgery adequately corrects high order aberrations. Significant high order aberration usually requires a rigid gas-permeable contact lens for optimal visual rehabilitation.
Customized Wavefront-guided refractive corneal laser treatments are designed to reduce existing aberrations and to help prevent the creation of new aberrations. The wavefront map of the eye may be transferred to a Lasik system and enable the surgeon to treat the aberration. Perfect alignment of the treatment and the pupil on which the Wavefront is measured is required, which is usually achieved through iris feature detection. An efficient eye tracking system and small spot size laser is necessary for treatment . Wavefront customization of ablation increases the depth of ablation because additional corneal tissue must be ablated to compensate for the high order aberrations. Actual results with Wavefront guided LASIK showed that not only it cannot remove HOA but also the optical aberrations are increased. However, the amount of increase in aberrations are less than conventional Lasik. Corneal optical aberrations after photorefractive keratectomy with a larger ablation zone and a transition zone are less pronounced and more physiologic than those associated with first-generation (5 mm) ablations with no transition zone. An upcoming systematic review will seek to compare the safety and effectiveness of wavefront excimer laser refractive surgery with conventional excimer laser refractive surgery, and will measure differences in residual higher order aberrations between the two procedures.
Aspherical intraocular lenses (IOLs) have been used clinically to compensate for positive corneal spherical aberrations. Although Aspherical IOLs may give better contrast sensitivity, it is doubtful, whether they have a beneficial effect on distance visual acuity. Conventional (not Aspherical) IOLs give better depth of focus and better near vision. The reason for improved depth of focus in conventional lenses is linked to residual spherical aberration. The small improvement in depth of focus with the conventional IOLs enhances uncorrected near vision and contribute to reading ability.
Wavefront customized lenses can be used in eyeglasses. Based on Wavefront map of the eye and with the use of laser a lens is shaped to compensate for the aberrations of the eye and then put in the eyeglasses. Ultraviolet Laser can alter the refractive index of curtain lens materials such as epoxy polymer on a point by point basis in order to generate the desired refractive profile.
Wavefront customized contact lenses can theoretically correct HOA. The rotation and decentration reduces the predictability of this method.
New surgical procedures may also provide solutions for those who do not want to wear glasses or contacts, including the implantation of accommodative intraocular lenses. INTRACOR has now been approved in Europe for treatment of both eyes (turning both corneas into multifocal lenses and so dispensing with the need for reading glasses).
Another treatment option for the correction of presbyopia in patients with emmetropia, as well as in patients with myopia, hyperopia and astigmatism is laser blended vision. This procedure uses laser refractive surgery to correct the dominant eye mainly for distance vision and the nondominant eye mainly for near vision, while the depth of field (i.e. the range of distances at which the image is in focus) of each eye is increased. As a result of the increased depth of field, the brain merges the two images, creating a blend zone, i.e. a zone which is in focus for both eyes. This allows the patient to see near, intermediate and far without glasses. Some literature also suggests the benefits achieved include the brain learning to adapt, assimilating two images, one of which is out of focus. Over time, many patients report they are unaware one eye is out of focus.
Surgically implanted corneal inlays are another treatment option for presbyopia. Corneal inlays typically are implanted in the nondominant eye to minimize impact to binocular uncorrected distance vision. They seek to improve near vision in one of three ways: changing the central refractive index, increasing the depth of focus through the use of a pinhole, and reshaping the central cornea.
The prognosis for each patient with esotropia will depend upon the origin and classification of their condition. However, in general, management will take the following course:
1. Identify and treat any underlying systemic condition.
2. Prescribe any glasses required and allow the patient time to 'settle into' them.
3. Use occlusion to treat any amblyopia present and encourage alternation.
4. Where appropriate, orthoptic exercises can be used to attempt to restore binocularity.
5. Where appropriate, prismatic correction can be used, either temporarily or permanently, to relieve symptoms of double vision.
6. In specific cases, and primarily in adult patients, botulinum toxin can be used either as a permanent therapeutic approach, or as a temporary measure to prevent contracture of muscles prior to surgery
7. Where necessary, extra-ocular muscle surgery can be undertaken to improve cosmesis and, on occasion, restore binocularity.
As with other binocular vision disorders, the primary goal is comfortable, single, clear, normal binocular vision at all distances and directions of gaze.
Strabismus is usually treated with a combination of eyeglasses, vision therapy, and surgery, depending on the underlying reason for the misalignment.
Whereas amblyopia (lazy eye), if minor and detected early, can often be corrected with use of an eye patch on the dominant eye and/or vision therapy, the use of eye patches is unlikely to change the angle of strabismus.
In general, strabismus can be approached and treated with a variety of procedures. Depending on the individual case, treatment options include:
- Correction of refractive errors by glasses
- Prism therapy (if tolerated, to manage diplopia)
- Patching (mainly to manage amblyopia in children and diplopia in adults)
- Botulinum toxin injection
- Surgical correction
Surgical correction of the hypertropia is desired to achieve binocularity, manage diplopia and/or correct the cosmetic defect. Steps to achieve the same depend on mechanism of the hypertropia and identification of the offending muscles causing the misalignment. Various surgical procedures have been described and should be offered after careful examination of eyes, including a detailed orthoptic examination focussing on the disturbances in ocular motility and visual status. Specialty fellowship trained pediatric ophthalmologists and strabismus surgeons are best equipped to deal with these complex procedures.
Refractive errors such as hyperopia and Anisometropia may be associated abnormalities found in patients with vertical strabismus.
The vertical miscoordination between the two eyes may lead to
- Strabismic amblyopia, (due to deprivation / suppression of the deviating eye)
- cosmetic defect (most noticed by parents of a young child and in photographs)
- Face turn, depending on presence of binocular vision in a particular gaze
- diplopia or double vision - more seen in adults (maturity / plasticity of neural pathways) and suppression mechanisms of the brain in sorting out the images from the two eyes.
- cyclotropia, a cyclotorsional deviation of the eyes (rotation around the visual axis), particularly when the root cause is an oblique muscle paresis causing the hypertropia.
"Congenital esotropia," or "infantile esotropia," is a specific sub-type of primary concomitant esotropia. It is a constant esotropia of large and consistent size with onset between birth and six months of age. It is not associated with hyperopia, so the exertion of accommodative effort will not significantly affect the angle of deviation. It is, however, associated with other ocular dysfunctions including oblique muscle over-actions, Dissociated Vertical Deviation (DVD,) Manifest Latent Nystagmus, and defective abduction, which develops as a consequence of the tendency of those with infantile esotropia to 'cross fixate.' Cross fixation involves the use of the right eye to look to the left and the left eye to look to the right; a visual pattern that will be 'natural' for the person with the large angle esotropia whose eye is already deviated towards the opposing side.
The origin of the condition is unknown, and its early onset means that the affected individual's potential for developing binocular vision is limited. The appropriate treatment approach remains a matter of some debate. Some ophthalmologists favour an early surgical approach as offering the best prospect of binocularity whilst others remain unconvinced that the prospects of achieving this result are good enough to justify the increased complexity and risk associated with operating on those under the age of one year.
Patients with optic disc drusen should be monitored periodically for ophthalmoscopy, Snellen acuity, contrast sensitivity, color vision, intraocular pressure and threshold visual fields. For those with visual field defects optical coherence tomography has been recommended for follow up of nerve fiber layer thickness. Associated conditions such as angioid streaks and retinitis pigmentosa should be screened for. Both the severity of optic disc drusen and the degree of intraocular pressure elevation have been associated with visual field loss. There is no widely accepted treatment for ODD, although some clinicians will prescribe eye drops designed to decrease the intra-ocular pressure and theoretically relieve mechanical stress on fibers of the optic disc. Rarely choroidal neovascular membranes may develop adjacent to the optic disc threatening bleeding and retinal scarring. Laser treatment or photodynamic therapy or other evolving therapies may prevent this complication.
Aphakia is the absence of the lens of the eye, due to surgical removal, a perforating wound or ulcer, or congenital anomaly. It causes a loss of accommodation, far sightedness (hyperopia), and a deep anterior chamber. Complications include detachment of the vitreous or retina, and glaucoma.
Babies are rarely born with aphakia. Occurrence most often results from surgery to remove congenital cataract (clouding of the eye's lens, which can block light from entering the eye and focusing clearly). Congenital cataracts usually develop as a result of infection of the fetus or genetic reasons. It is often difficult to identify the exact cause of these cataracts, especially if only one eye is affected.
People with aphakia have relatively small pupils and their pupils dilate to a lesser degree.
An accurate diagnosis of retinitis pigmentosa relies on the documentation of the progressive loss photoreceptor cell function, confirmed by a combination of visual field and visual acuity tests, fundus and optical coherence imagery, and electroretinography (ERG),
Visual field and acuity tests measure and compare the size of the patient's field of vision and the clarity of their visual perception with the standard visual measurements associated with healthy 20/20 vision. Clinical diagnostic features indicative of retinitis pigmentosa include a substantially small and progressively decreasing visual area in the visual field test, and compromised levels of clarity measured during the visual acuity test. Additionally, optical tomography such as fundus and retinal (optical coherence) imagery provide further diagnostic tools when determining an RP diagnosis. Photographing the back of the dilated eye allows the confirmation of bone spicule accumulation in the fundus, which presents during the later stages of RP retinal degeneration. Combined with cross-sectional imagery of optical coherence tomography, which provides clues into photoreceptor thickness, retinal layer morphology, and retinal pigment epithelium physiology, fundus imagery can help determine the state of RP progression.
While visual field and acuity test results combined with retinal imagery support the diagnosis of retinitis pigmentosa, additional testing is necessary to confirm other pathological features of this disease. Electroretinography (ERG) confirms the RP diagnosis by evaluating functional aspects associated with photoreceptor degeneration, and can detect physiological abnormalities before the initial manifestation of symptoms. An electrode lens is applied to the eye as photoreceptor response to varying degrees of quick light pulses is measured. Patients exhibiting the retinitis pigmentosa phenotype would show decreased or delayed electrical response in the rod photoreceptors, as well as possibly compromised cone photoreceptor cell response.
The patient's family history is also considered when determining a diagnosis due to the genetic mode of inheritance of retinitis pigmentosa. At least 35 different genes or loci are known to cause "nonsyndromic RP" (RP that is not the result of another disease or part of a wider syndrome). Indications of the RP mutation type can be determine through DNA testing, which is available on a clinical basis for:
- (autosomal recessive, Bothnia type RP)
- (autosomal dominant, RP1)
- (autosomal dominant, RP4)
- (autosomal dominant, RP7)
- (autosomal dominant, RP13)
- (autosomal dominant, RP18)
- CRB1 (autosomal recessive, RP12)
- (autosomal recessive, RP19)
- (autosomal recessive, RP20)
For all other genes (e.g. DHDDS), molecular genetic testing is available on a research basis only.
RP can be inherited in an autosomal dominant, autosomal recessive, or X-linked manner. X-linked RP can be either recessive, affecting primarily only males, or dominant, affecting both males and females, although males are usually more mildly affected. Some digenic (controlled by two genes) and mitochondrial forms have also been described.
Genetic counseling depends on an accurate diagnosis, determination of the mode of inheritance in each family, and results of molecular genetic testing.
Without the focusing power of the lens, the eye becomes very farsighted. This can be corrected by wearing glasses, contact lenses, or by implant of an artificial lens. Artificial lenses are described as "pseudophakic." Also, since the lens is responsible for adjusting the focus of vision to different lengths, patients with aphakia have a total loss of accommodation.
Some individuals have said that they perceive ultraviolet light, invisible to those with a lens, as whitish blue or whitish-violet.
In most patients, optic disc drusen are an incidental finding. It is important to differentiate them from other conditions that present with optic disc elevation, especially papilledema, which could imply raised intracranial pressure or tumors. True papilledema may present with exudates or cotton-wool spots, unlike ODD. The optic disc margins are characteristically irregular in ODD but not blurred as there is no swelling of the retinal nerve fibers. Spontaneous venous pulsations are present in about 80 percent of patients with ODD, but absent in cases of true disc edema. Other causes of disc elevation clinicians must exclude may be: hyaloid traction, epipapillary glial tissue, myelinated nerve fibres, scleral infiltration, vitreopapillary traction and high hyperopia. Disorders associated with disc elevation include: Alagille syndrome, Down syndrome, Kenny-Caffey syndrome, Leber Hereditary Optic Neuropathy and linear nevus sebaceous syndrome.
Retinitis pigmentosa is the leading cause of inherited blindness, with approximately 1/4,000 individuals experiencing the non-syndromic form of their disease within their lifetime. It is estimated that 1.5 million people worldwide are currently affected. Early onset RP occurs within the first few years of life and is typically associated with syndromic disease forms, while late onset RP emerges from early to mid-adulthood.
Autosomal dominant and recessive forms of retinitis pigmentosa affect both male and female populations equally; however, the less frequent X-linked form of the disease affects male recipients of the X-linked mutation, while females usually remain unaffected carriers of the RP trait. The X-linked forms of the disease are considered severe, and typically lead to complete blindness during later stages. In rare occasions, a dominant form of the X-linked gene mutation will affect both males and females equally.
Due to the genetic inheritance patterns of RP, many isolate populations exhibit higher disease frequencies or increased prevalence of a specific RP mutation. Pre-existing or emerging mutations that contribute to rod photoreceptor degeneration in retinitis pigmentosa are passed down through familial lines; thus, allowing certain RP cases to be concentrated to specific geographical regions with an ancestral history of the disease. Several hereditary studies have been performed to determine the varying prevalence rates in Maine (USA), Birmingham (England), Switzerland (affects 1/7000), Denmark (affects 1/2500), and Norway. Navajo Indians display an elevated rate of RP inheritance as well, which is estimated as affecting 1 in 1878 individuals. Despite the increased frequency of RP within specific familial lines, the disease is considered non-discriminatory and tends to equally affect all world populations.
A spasm of accommodation (also known as a ciliary spasm, an accommodation, or accommodative spasm) is a condition in which the ciliary muscle of the eye remains in a constant state of contraction. Normal accommodation allows the eye to "accommodate" for near-vision. However in a state of perpetual contraction, the ciliary muscle cannot relax when viewing distant objects. This causes vision to blur when attempting to view objects from a distance. This may cause pseudomyopia or latent hyperopia.
Although antimuscarinic drops (homoatropine 5%) can be applied topically to relax the muscle, this leaves the individual without any accommodation and, depending on refractive error, unable to see well at near distances. Also, excessive pupil dilation may occur as an unwanted side effect. This dilation may pose a problem since a larger pupil is less efficient at focusing light (see pupil, aperture, and optical aberration for more.)
Patients who have accommodative spasm may benefit from being given glasses or contacts that account for the problem or by using vision therapy techniques to regain control of the accommodative system..
Possible clinical findings include:
Normal Amplitude of accommodation and Near point of convergence
Reduced Negative relative accommodation
Difficulty clearing plus on facility testing