Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Before birth, openings in the abdomen can usually be detected by a detailed ultrasound or AFP screening. In addition to the ultrasound or AFP scanning, it is also necessary for children with this defect to be checked for other birth defects because genetic disorders are usually associated with some of the abdominal wall defects. In looking for other genetic disorders that may be associated, Genetic counseling and further genetic testing, such as amniocentesis, are offered.
A diagnosis of pentalogy of Cantrell can often be made before birth (prenatally) sometimes using a fetal ultrasound. An ultrasound is an exam that uses high-frequency sound waves to produce an image of the developing fetus. A fetal ultrasound can detect some of the defects associated with pentalogy of Cantrell. An echocardiography is usually performed to evaluate the extent of the involvement of the heart. An echocardiography is an exam that uses sound waves to produce images of the heart
Magnetic resonance imaging (MRI) may also be performed to assess the degree of certain anomalies such as abdominal wall and pericardial defects. An MRI uses a magnetic field and radio waves to produce cross-sectional images of particular organs and bodily tissues.
Abdominal wall defects can be treated surgically if there is no accompanying anomalies. The surgical procedure also called omphalocele repair/closure or gastroschisis repair/closure is not overcomplicated. The organs are normal but are misplaced.
However, if the abdominal cavity is too small or when the organs are too large or swollen to close the skin, it may be difficult to fit all the viscera into the small abdominal cavity. In such cases, the surgeon will place a covering pouch generally made of silastic, commonly called a "silo" (because it's shaped like an agricultural silo), over the abdominal organs on the outside of the infant. The silo serves to conserve heat and prevent infection. The silo is spring-loaded so that the device can be attached to the inside of the abdominal wall without sutures. The top of the silo is secured in a way that causes it to stand upright, so that the bowels are gradually coaxed into the abdominal cavity by gravity. This process can take up to a week, and final closure may be performed a few weeks later. More surgery may be required to repair the abdominal muscles at a later time.
If left untreated, gastroschisis is fatal to the infant; however, in adequate settings the survival rate for treated infants is 90%.
Most risks of gastroschisis are related to decreased bowel function. Sometimes blood flow to the exposed organs is impaired or there may be less than the normal amount of intestine. This may put infants at risk for other dangerous conditions such as necrotizing enterocolitis. Also, because their intestines are exposed, infants with gastroschisis are at increased risk for infection, and must be closely monitored.
One way to determine if a baby does in fact have a Bochdalek hernia, would be to have a pediatrician perform a physical on the infant. A chest x-ray can also be done to examine the abnormalities of not only the lungs but also the diaphragm and the intestine. In addition to these, a doctor can also take a blood test, drawing arterial blood to check and determine how well the baby is breathing and his or her ability to breathe. A chromosomal test (done by testing the blood) can also be performed to determine whether or not the problem was genetic. The doctors can also take an ultrasound of the heart (echocardiogram) to evaluate the health of the heart.
Congenital diaphragmatic hernia has a mortality rate of 40–62%, with outcomes being more favorable in the absence of other congenital abnormalities. Individual rates vary greatly dependent upon multiple factors: size of hernia, organs involved, additional birth defects, and/or genetic problems, amount of lung growth, age and size at birth, type of treatments, timing of treatments, complications (such as infections) and lack of lung function.
This condition can often be diagnosed before birth and fetal intervention can sometimes help, depending on the severity of the condition.
Infants born with diaphragmatic hernia experience respiratory failure due to both pulmonary hypertension and pulmonary hypoplasia. The first condition is a restriction of blood flow through the lungs thought to be caused by defects in the lung. Pulmonary hypoplasia or decreased lung volume is directly related to the abdominal organs presence in the chest cavity which causes the lungs to be severely undersized, especially on the side of the hernia.
Survival rates for infants with this condition vary, but have generally been increasing through advances in neonatal medicine. Work has been done to correlate survival rates to ultrasound measurements of the lung volume as compared to the baby's head circumference. This figure known as the lung to head ratio (LHR). Still, LHR remains an inconsistent measure of survival. Outcomes of CDH are largely dependent on the severity of the defect and the appropriate timing of treatment.
A small percentage of cases go unrecognized into adulthood.
In the developed world, around 90% of cases are identified during normal ultrasound screens, usually in the second trimester.
Distinguished from other ventral body wall defects such as omphalocele, there is no overlying sac or peritoneum, and the defect is usually much smaller in gastroschisis.
Bochdalek hernia can be a life-threatening condition. Approximately 85.3% of newborns born with a Bochdalek hernia are immediately high risk. Infants born with a Bochdalek hernia have a "high mortality rate due to respiratory insufficiency". Between 25–60% of infants with a Bochdalek hernia die. The lungs, diaphragm, and digestive system are all forming at the same time, so when a Bochdalek hernia permits the abdominal organs to invade the chest cavity rather than remain under the diaphragm in the correct position, it puts the infant in critical condition. These "foreign bodies" in the chest cavity compress the lungs, impairing their proper development and causing pulmonary hypoplasia. Since the lungs of infants suffering from a Bochdalek hernia have fewer alveoli than normal lungs, Bochdalek hernias are life-threatening conditions due to respiratory distress. Also, if the invasion of the intestine or stomach punctures the lung, then the lungs cannot fill completely with air. The baby will not be healthy or stable with this condition because he or she cannot take in enough air and oxygen to keep the body operating properly. Like the lungs, the intestines may also have trouble developing correctly. If the intestines are trapped within the lungs, then the lungs and intestines may not be receiving the amount of blood they need to stay healthy and function properly.
Prenatal Diagnosis:
- Aymé, "et al." (1989) reported prenatal diagnosis of Fryns syndrome by sonography between 24 and 27 weeks.
- Manouvrier-Hanu et al. (1996) described the prenatal diagnosis of Fryns syndrome by ultrasonographic detection of diaphragmatic hernia and cystic hygroma. The diagnosis was confirmed after termination of the pregnancy. The fetus also had 2 erupted incisors; natal teeth had not been mentioned in other cases of Fryns syndrome.
Differential Diagnosis:
- McPherson et al. (1993) noted the phenotypic overlap between Fryns syndrome and the Pallister–Killian syndrome (601803), which is a dysmorphic syndrome with tissue-specific mosaicism of tetrasomy 12p.
- Veldman et al. (2002) discussed the differentiation between Fryns syndrome and Pallister–Killian syndrome, noting that differentiation is important to genetic counseling because Fryns syndrome is an autosomal recessive disorder and Pallister–Killian syndrome is usually a sporadic chromosomal aberration. However, discrimination may be difficult due to the phenotypic similarity. In fact, in some infants with 'coarse face,' acral hypoplasia, and internal anomalies, the initial diagnosis of Fryns syndrome had to be changed because mosaicism of isochromosome 12p was detected in fibroblast cultures or kidney tissue. Although congenital diaphragmatic hernia is a common finding in both syndromes, bilateral congenital diaphragmatic hernia had been reported only in patients with Fryns syndrome until the report of the patient with Pallister–Killian syndrome by Veldman et al. (2002).
- Slavotinek (2004) reviewed the phenotypes of 52 reported cases of Fryns syndrome and reevaluated the diagnostic guidelines. She concluded that congenital diaphragmatic hernia and distal limb hypoplasia are strongly suggestive of Fryns syndrome, with other diagnostically relevant findings including pulmonary hypoplasia, craniofacial dysmorphism, polyhydramnios, and orofacial clefting. Slavotinek (2004) stated that other distinctive anomalies not mentioned in previous guidelines include ventricular dilatation or hydrocephalus, agenesis of the corpus callosum, abnormalities of the aorta, dilatation of the ureters, proximal thumbs, and broad clavicles.
The treatment of pentalogy of Cantrell is directed toward the specific symptoms that are apparent in each individual. Surgical intervention for cardiac, diaphragmatic and other associated defects is necessary. Affected infants will require complex medical care and may require surgical intervention. In most cases, pentalogy of Cantrell is fatal without surgical intervention. However, in some cases, the defects are so severe that the individual dies regardless of the medical or surgical interventions received.
The specific treatment strategy will vary from one infant to another based upon various factors, including the size and type of abdominal wall defect, the specific cardiac anomalies that are present, and the particular type of ectopia cordis. Surgical procedures that may be required shortly after birth include repair of an omphalocele. At this time, physicians may also attempt to repair certain other defects including defects of the sternum, diaphragm and the pericardium.
In severe cases, some physicians advocate for a staged repair of the defects associated with pentalogy of Cantrell. The initial operation immediately after birth provides separation of the peritoneal and pericardial cavities, coverage of the midline defect and repair of the omphalocele. After appropriate growth of the thoracic cavity and lungs, the second stage consists of the repair of cardiac defects and return of the heart to the chest. Eventually, usually by age 2 or 3, reconstruction of the lower sternum or epigastrium may be necessary.
Other treatment of pentalogy of Cantrell is symptomatic and supportive.
On chest radiography, a retrocardiac, gas-filled viscus may be seen in cases of intrathoracic stomach, which confirms the diagnosis. Plain abdominal radiography reveals a massively distended viscus in the upper abdomen. In organoaxial volvulus, plain films may show a horizontally oriented stomach with a single air-fluid level and a paucity of distal gas. In mesenteroaxial volvulus, plain abdominal radiographic findings include a spherical stomach on supine images and 2 air-fluid levels on erect images, with the antrum positioned superior to the fundus.
- Upper GI contrast studies:
The diagnosis of gastric volvulus is usually based on barium studies; however, some authors recommend computed tomography (CT) scanning as the imaging modality of choice.
Upper gastrointestinal (GI) contrast radiographic studies (using barium or Gastrografin) are sensitive and specific if performed with the stomach in the "twisted" state and may show an upside-down stomach. Contrast studies have been reported to have a diagnostic yield in 81–84% of patients.
Often performed for an evaluation of acute abdominal pain, a computed tomography (CT) scan can offer immediate diagnosis by showing two bubbles with a transition line. Proponents of CT scanning in the diagnosis of gastric volvulus report several benefits, including:
1. the ability to rapidly diagnose the condition based on a few coronal reconstructed images,
2. the ability to detect the presence or absence of gastric pneumatosis and free air,
3. the detection of predisposing factors (i.e., diaphragmatic or hiatal hernias), and
4. the exclusion of other abdominal pathology.
- Endoscopy:
Upper gastrointestinal (GI) endoscopy may be helpful in the diagnosis of gastric volvulus. When this procedure reveals distortion of the gastric anatomy with difficulty intubating the stomach or pylorus, it can be highly suggestive of gastric volvulus. In the late stage of gastric volvulus, strangulation of the blood supply can result in progressive ischemic ulceration or mucosal fissuring.
The nonoperative mortality rate for gastric volvulus is reportedly as high as 80%. Historically, mortality rates of 30–50% have been reported for acute gastric volvulus, with the major cause of death being strangulation, which can lead to necrosis and perforation. With advances in diagnosis and management, the mortality rate from acute gastric volvulus is 15–20% and that for chronic gastric volvulus is 0–13%.
The benefits of the use of an external device to maintain reduction of the hernia without repairing the underlying defect (such as hernia trusses, trunks, belts, etc.) are unclear.
In some communities mothers routinely push the small bulge back in and tape a coin over the palpable hernia hole until closure occurs. This practice is not medically recommended as there is a small risk of trapping a loop of bowel under part of the coin resulting in a small area of ischemic bowel. This "fix" does not help and germs may accumulate under the tape, causing infection. The use of bandages or other articles to continuously reduce the hernia is not evidence-based.
An umbilical hernia can be fixed in two different ways. The surgeon can opt to stitch the walls of the abdominal or he/she can place mesh over the opening and stitch it to the abdominal walls. The latter is of a stronger hold and is commonly used for larger defects in the abdominal wall. Most surgeons will not repair the hernia until 5–6 years after the baby is born. Most umbilical hernias in infants and children close spontaneously and rarely have complications of gastrointestinal-content incarcerations.
How far the projection of the swelling extends from the surface of the abdomen (the belly) varies from child to child. In some, it may be just a small protrusion; in others it may be a large rounded swelling that bulges out when the baby cries. It may hardly be visible when the child is quiet and or sleeping.
Normally, the abdominal muscles converge and fuse at the umbilicus during the formation stage, however, in some cases, there remains a gap where the muscles do not close and through this gap the inner intestines come up and bulge under the skin, giving rise to an umbilical hernia. The bulge and its contents can easily be pushed back and reduced into the abdominal cavity.
In contrast to an inguinal hernia, the complication incidence is very low, and in addition, the gap in the muscles usually closes with time and the hernia disappears on its own. The treatment of this condition is essentially conservative: observation allowing the child to grow up and see if it disappears. Operation and closure of the defect is required only if the hernia persists after the age of 3 years or if the child has an episode of complication during the period of observation like irreducibility, intestinal obstruction, abdominal distension with vomiting, or red shiny painful skin over the swelling. Surgery is always done under anesthesia. The defect in the muscles is defined and the edges of the muscles are brought together with sutures to close the defect. In general, the child needs to stay in the hospital for 2 days and the healing is complete within 8 days.
At times, there may be a fleshy red swelling seen in the hollow of the umbilicus that persists after the cord has fallen off. It may bleed on touch, or may stain the clothes that come in contact with it. This needs to be shown to a pediatric surgeon. This is most likely to be an umbilical polyp and the therapy is to tie it at the base with a stitch so that it falls off and there is no bleeding. Alternatively, it may be an umbilical granuloma that responds well to local application of dry salt or silver nitrate but may take a few weeks to heal and dry.
In France, Aymé, "et al." (1989) estimated the prevalence of Fryns syndrome to be 0.7 per 10,000 births based on the diagnosis of 6 cases in a series of 112,276 consecutive births (live births and perinatal deaths).
Many people are managed through day surgery centers, and are able to return to work within a week or two, while intense activities are prohibited for a longer period. People who have their hernias repaired with mesh often recover within a month, though pain can last longer. Surgical complications include pain that lasts more than three months, surgical site infections, nerve and blood vessel injuries, injury to nearby organs, and hernia recurrence. Pain that lasts more than three months occurs in about 10% of people following hernia repair.
A technetium-99m (99mTc) pertechnetate scan, also called Meckel scan, is the investigation of choice to diagnose Meckel's diverticula in children. This scan detects gastric mucosa; since approximately 50% of symptomatic Meckel's diverticula have ectopic gastric or pancreatic cells contained within them, this is displayed as a spot on the scan distant from the stomach itself. In children, this scan is highly accurate and noninvasive, with 95% specificity and 85% sensitivity; however, in adults the test is only 9% specific and 62% sensitive.
Patients with these misplaced gastric cells may experience peptic ulcers as a consequence. Therefore, other tests such as colonoscopy and screenings for bleeding disorders should be performed, and angiography can assist in determining the location and severity of bleeding. Colonoscopy might be helpful to rule out other sources of bleeding but it is not used as an identification tool. Angiography might identify brisk bleeding in patients with Meckel's diverticulum.
Ultrasonography could demonstrate omphaloenteric duct remnants or cysts. Computed tomography (CT scan) might be a useful tool to demonstrate a blind ended and inflamed structure in the mid-abdominal cavity, which is not an appendix.
In asymptomatic patients, Meckel's diverticulum is often diagnosed as an incidental finding during laparoscopy or laparotomy.
Lymphatic malformations may be detected in the human fetus by ultrasound if they are of sufficient size. Detection of a cystic malformation may prompt further investigation, such as amniocentesis, in order to evaluate for genetic abnormalities in the fetus. Lymphatic malformations may be discovered postnatally or in older children/adults, and most commonly present as a mass or as an incidental finding during medical imaging.
Verification of the diagnosis may require more testing, as there are multiple cystic masses that arise in children. Imaging, such as ultrasound or MRI, may provide more information as to the size and extent of the lesion.
Treatment is surgical, potentially with a laparoscopic resection. In patients with bleeding, strangulation of bowel, bowel perforation or bowel obstruction, treatment involves surgical resection of both the Meckel's diverticulum itself along with the adjacent bowel segment, and this procedure is called a "small bowel resection". In patients without any of the aforementioned complications, treatment involves surgical resection of the Meckel's diverticulum only, and this procedure is called a simple diverticulectomy.
With regards to asymptomatic Meckel's diverticulum, some recommend that a search for Meckel's diverticulum should be conducted in every case of appendectomy/laparotomy done for acute abdomen, and if found, Meckel's diverticulectomy or resection should be performed to avoid secondary complications arising from it.
Navels with the umbilical tip protruding past the umbilical skin ("outies") are often mistaken for umbilical hernias, which are a completely different shape. Treatment for cosmetic purposes is not necessary, unless there are Incarceration refers to the inability to reduce the hernia back into the abdominal cavity. Prolonged incarceration can lead to tissue ischemia (strangulation) and shock when untreated.
Umbilical hernias are rare. With a study involving Africans, 92% of children had protrusions, 49% of adults, and 90% of pregnant women. However, a much smaller amount actually suffered from hernias: only 23% of children, 8% of adults, and 15% of pregnant women.
When the orifice is small (< 1 or 2 cm), 90% close within 3 years (some sources state 85% of all umbilical hernias, regardless of size), and if these hernias are asymptomatic, reducible, and don't enlarge, no surgery is needed (and in other cases it must be considered).
Treatment depends on the anatomy of the malformation as determined by angiography or Magnetic Resonance Imaging (MRI).
The type of treatment, like that of most disorders, depends on the severity of the symptoms. One option is to perform a "vesicostomy", which allows the bladder to drain through a small hole in the abdomen, thus helping to prevent urinary tract infections. Similarly, consistent self catheterization, often several times per day, can be an effective approach to preventing infections. A more drastic procedure is a surgical "remodeling" of the abdominal wall and urinary tract. Boys often need to undergo an orchiopexy, to move the testes to their proper place in the scrotum.
The prognosis of ectopia cordis depends on classification according to three factors:
1. Location of the defect
- Cervical
- Thoracic
- Thoracoabdominal
- Abdominal
2. Extent of the cardiac displacement
3. Presence or absence of intracardiac defects
Some studies have suggested a better prognosis with surgery in cases of thoracoabdominal ectopia cordis or less severe pentalogy of Cantrell. In general, the prognosis for ectopia cordis is poor—most cases result in death shortly after birth due to infection, hypoxemia, or cardiac failure.
Patients with abnormal cardiac and kidney function may be more at risk for hemolytic uremic syndrome
Upon delivery, the exposed bladder is irrigated and a non-adherent film is placed to prevent as much contact with the external environment as possible. In the event the child was not born at a medical center with an appropriate exstrophy support team then transfer will likely follow. Upon transfer, or for those infants born at a medical center able to care for bladder exstrophy, imaging may take place in the first few hours of life prior to the child undergoing surgery.
Primary (immediate) closure is indicated only in those patients with a bladder of appropriate size, elasticity, and contractility as those patients are most likely to develop a bladder of adequate capacity after early surgical intervention.
Conditions that are absolute contraindications despite bladder adequacy include duplication of the penis or scrotum and significant bilateral hydronephrosis.