Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Prenatal Diagnosis:
- Aymé, "et al." (1989) reported prenatal diagnosis of Fryns syndrome by sonography between 24 and 27 weeks.
- Manouvrier-Hanu et al. (1996) described the prenatal diagnosis of Fryns syndrome by ultrasonographic detection of diaphragmatic hernia and cystic hygroma. The diagnosis was confirmed after termination of the pregnancy. The fetus also had 2 erupted incisors; natal teeth had not been mentioned in other cases of Fryns syndrome.
Differential Diagnosis:
- McPherson et al. (1993) noted the phenotypic overlap between Fryns syndrome and the Pallister–Killian syndrome (601803), which is a dysmorphic syndrome with tissue-specific mosaicism of tetrasomy 12p.
- Veldman et al. (2002) discussed the differentiation between Fryns syndrome and Pallister–Killian syndrome, noting that differentiation is important to genetic counseling because Fryns syndrome is an autosomal recessive disorder and Pallister–Killian syndrome is usually a sporadic chromosomal aberration. However, discrimination may be difficult due to the phenotypic similarity. In fact, in some infants with 'coarse face,' acral hypoplasia, and internal anomalies, the initial diagnosis of Fryns syndrome had to be changed because mosaicism of isochromosome 12p was detected in fibroblast cultures or kidney tissue. Although congenital diaphragmatic hernia is a common finding in both syndromes, bilateral congenital diaphragmatic hernia had been reported only in patients with Fryns syndrome until the report of the patient with Pallister–Killian syndrome by Veldman et al. (2002).
- Slavotinek (2004) reviewed the phenotypes of 52 reported cases of Fryns syndrome and reevaluated the diagnostic guidelines. She concluded that congenital diaphragmatic hernia and distal limb hypoplasia are strongly suggestive of Fryns syndrome, with other diagnostically relevant findings including pulmonary hypoplasia, craniofacial dysmorphism, polyhydramnios, and orofacial clefting. Slavotinek (2004) stated that other distinctive anomalies not mentioned in previous guidelines include ventricular dilatation or hydrocephalus, agenesis of the corpus callosum, abnormalities of the aorta, dilatation of the ureters, proximal thumbs, and broad clavicles.
There is no cure for this condition. Treatment is supportive and varies depending on how symptoms present and their severity. Some degree of developmental delay is expected in almost all cases of M-CM, so evaluation for early intervention or special education programs is appropriate. Rare cases have been reported with no discernible delay in academic or school abilities.
Physical therapy and orthopedic bracing can help young children with gross motor development. Occupational therapy or speech therapy may also assist with developmental delays. Attention from an orthopedic surgeon may be required for leg length discrepancy due to hemihyperplasia.
Children with hemihyperplasia are thought to have an elevated risk for certain types of cancers. Recently published management guidelines recommend regular abdominal ultrasounds up to age eight to detect Wilms' tumor. AFP testing to detect liver cancer is not recommended as there have been no reported cases of hepatoblastoma in M-CM patients.
Congenital abnormalities in the brain and progressive brain overgrowth can result in a variety of neurological problems that may require intervention. These include hydrocephalus, cerebellar tonsillar herniation (Chiari I), seizures and syringomyelia. These complications are not usually congenital, they develop over time often presenting complications in late infancy or early childhood, though they can become problems even later. Baseline brain and spinal cord MRI imaging with repeat scans at regular intervals is often prescribed to monitor the changes that result from progressive brain overgrowth.
Assessment of cardiac health with echocardiogram and EKG may be prescribed and arrhythmias or abnormalities may require surgical treatment.
Once the diagnosis of polymicrogyria has been established in an individual, the following approach can be used for discussion of prognosis:
A pregnancy history should be sought, with particular regard to infections, trauma, multiple gestations, and other documented problems. Screening for the common congenital infections associated with polymicrogyria with standard TORCH testing may be appropriate. Other specific tests targeting individual neurometabolic disorders can be obtained if clinically suggested.
The following may help in determining a genetic etiology:
Family history
It is important to ask for the presence of neurologic problems in family members, including seizures, cognitive delay, motor impairment, pseudobulbar signs, and focal weakness because many affected family members, particularly those who are older, may not have had MRI performed, even if these problems came to medical attention. In addition, although most individuals with polymicrogyria do present with neurologic difficulties in infancy, childhood, or adulthood, those with mild forms may have no obvious deficit or only minor manifestations, such as a simple lisp or isolated learning disability. Therefore, if a familial polymicrogyria syndrome is suspected, it may be reasonable to perform MRI on relatives who are asymptomatic or have what appear to be minor findings. The presence of consanguinity in a child's parents may suggest an autosomal recessive familial polymicrogyria syndrome.
Physical examination
A general physical examination of the proband may identify associated craniofacial, musculoskeletal, or visceral malformations that could indicate a particular syndrome. Neurologic examination should assess cognitive and mental abilities, cranial nerve function, motor function, deep tendon reflexes, sensory function, coordination, and gait (if appropriate).
Genetic testing
Three dimensional (3D) T1W, Axial, coronal, sagittal imaging is excellent for differentiation between gray matter and white matter acquisition of high-resolution anatomic information.T2W, Axial and coronal imaging for acquisition of high-resolution anatomic information; delineation of cortex, white matter, and gray matter nuclei. Diffusion tensor, axial imaging is used for evaluation of white matter microstructural integrity, identification of white matter tracts. CISS, axial + MPR imaging for evaluation of cerebellar folia, cranial nerves, ventricles, and foramina. Susceptibility weighted axial scan for Identification and characterization of hemorrhage, blood products, calcification, and iron accumulation.
Microlissencephaly can be diagnosed by prenatal MRI. MRI is better than ultrasound when it comes to detecting microlissencephaly or MSGP prenatally.
The ideal time for proper prenatal diagnosis is between the 34th and 35th gestational week which is the time when the secondary gyration normally terminates. In microlissencephaly cases, the primary sulci would be unusually wide and flat while secondary sulci would be missing.
At birth, lissencephaly with a head circumference of less than minus three standard deviations (< –3 SD) is considered microlissencephaly.
Although genetic diagnosis in patients with MLIS is challenging, exome sequencing has been suggested to be a powerful diagnostic tool.
Diagnosis is made through a combination of patient history, neurological examination, and medical imaging. Magnetic resonance imaging (MRI) is considered the best imaging modality for Chiari malformation since it visualizes neural tissue such as the cerebellar tonsils and spinal cord as well as bone and other soft tissues. CT and CT myelography are other options and were used prior to the advent of MRI, but they characterize syringomyelia and other neural abnormalities less well.
By convention the cerebellar tonsil position is measured relative to the basion-opisthion line, using sagittal T1 MRI images or sagittal CT images. The selected cutoff distance for abnormal tonsil position is somewhat arbitrary since not everyone will be symptomatic at a certain amount of tonsil displacement, and the probability of symptoms and syrinx increases with greater displacement, however greater than 5 mm is the most frequently cited cutoff number, though some consider 3–5 mm to be "borderline," and symptoms and syrinx may occur above that. One study showed little difference in cerebellar tonsil position between standard recumbent MRI and upright MRI for patients without a history of whiplash injury. Neuroradiological investigation is used to first rule out any intracranial condition that could be responsible for tonsillar herniation. Neuroradiological diagnostics evaluate the severity of crowding of the neural structures within the posterior cranial fossa and their impact on the foramen magnum. Chiari 1.5 is a term used when both brainstem and tonsillar herniation through the foramen magnum are present.
The diagnosis of a Chiari II malformation can be made prenatally through ultrasound.
Treatment for individuals with Dandy–Walker Syndrome generally consists of treating the associated problems, if needed.
A special tube (shunt) to reduce intracranial pressure may be placed inside the skull to control swelling. Endoscopic third ventriculostomy is also an option.
Treatment may also consist of various therapies such as occupational therapy, physiotherapy, speech therapy or specialized education. Services of a teacher of students with blindness/visual impairment may be helpful if the eyes are affected.
Recent research has found that Dandy–Walker syndrome often occurs in patients with PHACES syndrome.
In the late 19th century, Austrian pathologist Hans Chiari described seemingly related anomalies of the hindbrain, the so-called Chiari malformations I, II and III. Later, other investigators added a fourth (Chiari IV) malformation. The scale of severity is rated I – IV, with IV being the most severe. Types III and IV are very rare.
Other conditions sometimes associated with Chiari malformation include hydrocephalus, syringomyelia, spinal curvature, tethered spinal cord syndrome, and connective tissue disorders such as Ehlers-Danlos syndrome and Marfan syndrome.
Chiari malformation is the most frequently used term for this set of conditions. The use of the term Arnold–Chiari malformation has fallen somewhat out of favor over time, although it is used to refer to the type II malformation. Current sources use "Chiari malformation" to describe four specific types of the condition, reserving the term "Arnold-Chiari" for type II only. Some sources still use "Arnold-Chiari" for all four types.
Chiari malformation or Arnold–Chiari malformation should not be confused with Budd-Chiari syndrome, a hepatic condition also named for Hans Chiari.
In Pseudo-Chiari Malformation, Leaking of CSF may cause displacement of the cerebellar tonsils and similar symptoms sufficient to be mistaken for a Chiari I malformation.
Brain MRI shows vermis atrophy or hypoplasic. Cerebral and cerebellar atrophy with white matter changes in some cases.
Microlissencephaly is considered a more severe form than microcephaly with simplified gyral pattern. Microlissencephaly is characterized by a smooth cortical surface (absent sulci and gyri) with a thickened cortex (> 3 mm) and is usually associated with other congenital anomalies. Microcephaly with a simplified gyral pattern has too few sulci and normal cortical thickness (3 mm) and is usually an isolated anomaly.
Parents of a proband
- The parents of an affected individual are obligate heterozygotes and therefore carry one mutant allele.
- Heterozygotes (carriers) are asymptomatic.
Sibs of a proband
- At conception, each sibling of an affected individual has a 25% chance of being affected, a 50% chance of being an asymptomatic carrier, and a 25% chance of being unaffected and not a carrier.
- Once an at-risk sibling is known to be unaffected, the risk of his/her being a carrier is 2/3.
- Heterozygotes (carriers) are asymptomatic.
Offspring of a proband
- Offspring of a proband are obligate heterozygotes and will therefore carry one mutant allele.
- In populations with a high rate of consanguinity, the offspring of a person with GPR56-related BFPP and a reproductive partner who is a carrier of GPR56-related BFPP have a 50% chance of inheriting two GPR56 disease-causing alleles and having BFPP and a 50% chance of being carriers.
Other family members of a proband.
- Each sibling of the proband's parents is at a 50% risk of being a carrier
Prognoses for 3C syndrome vary widely based on the specific constellation of symptoms seen in an individual. Typically, the gravity of the prognosis correlates with the severity of the cardiac abnormalities. For children with less severe cardiac abnormalities, the developmental prognosis depends on the cerebellar abnormalities that are present. Severe cerebellar hypoplasia is associated with growth and speech delays, as well as hypotonia and general growth deficiencies.
Prognosis varies widely depending on severity of symptoms, degree of intellectual impairment, and associated complications. Because the syndrome is rare and so newly identified, there are no long term studies.
In France, Aymé, "et al." (1989) estimated the prevalence of Fryns syndrome to be 0.7 per 10,000 births based on the diagnosis of 6 cases in a series of 112,276 consecutive births (live births and perinatal deaths).
Neuroimaging like MRI is important. However, there was considerable intrafamilial variability regarding neuroimaging, with some individuals showing normal MRI findings. Early individual prognosis of such autosomal recessive cerebellar ataxias is not possible from early developmental milestones, neurological signs, or neuroimaging.
The outcome of this disease is dependent on the severity of the cardiac defects. Approximately 1 in 3 children with this diagnosis require shunting for the hydrocephaly that is often a consequence. Some children require extra assistance or therapy for delayed psychomotor and speech development, including hypotonia.
The diagnosis of Carpenter Syndrome is made based on the presence of the bicoronal and sagittal skull malformations, which results in a pointed, cone-shaped or short, broad head. The diagnosis is also made based on the presence of extra or fused digits. X rays and/ or CT scans of the skull may be performed in order to accurately diagnose the individual; however, other genetic disorders, which have available genetic tests, are also characterized by skull malformations. A positive result on these tests can rule out a Carpenter Syndrome diagnosis.
The diagnosis of this syndrome can be made on clinical examination and perinatal autopsy.
Koenig and Spranger (1986) noted that eye lesions are apparently nonobligatory components of the syndrome. The diagnosis of Fraser syndrome should be entertained in patients with a combination of acrofacial and urogenital malformations with or without cryptophthalmos. Thomas et al. (1986) also emphasized the occurrence of the cryptophthalmos syndrome without cryptophthalmos and proposed diagnostic criteria for Fraser syndrome. Major criteria consisted of cryptophthalmos, syndactyly, abnormal genitalia, and positive family history. Minor criteria were congenital malformation of the nose, ears, or larynx, cleft lip and/or palate, skeletal defects, umbilical hernia, renal agenesis, and mental retardation. Diagnosis was based on the presence of at least 2 major and 1 minor criteria, or 1 major and 4 minor criteria.
Boyd et al. (1988) suggested that prenatal diagnosis by ultrasound examination of eyes, digits, and kidneys should detect the severe form of the syndrome. Serville et al. (1989) demonstrated the feasibility of ultrasonographic diagnosis of the Fraser syndrome at 18 weeks' gestation. They suggested that the diagnosis could be made if 2 of the following signs are present: obstructive uropathy, microphthalmia, syndactyly, and oligohydramnios. Schauer et al. (1990) made the diagnosis at 18.5 weeks' gestation on the basis of sonography. Both the female fetus and the phenotypically normal father had a chromosome anomaly: inv(9)(p11q21). An earlier born infant had Fraser syndrome and the same chromosome 9 inversion.
Van Haelst et al. (2007) provided a revision of the diagnostic criteria for Fraser syndrome according to Thomas et al. (1986) through the addition of airway tract and urinary tract anomalies to the major criteria and removal of mental retardation and clefting as criteria. Major criteria included syndactyly, cryptophthalmos spectrum, urinary tract abnormalities, ambiguous genitalia, laryngeal and tracheal anomalies, and positive family history. Minor criteria included anorectal defects, dysplastic ears, skull ossification defects, umbilical abnormalities, and nasal anomalies. Cleft lip and/or palate, cardiac malformations, musculoskeletal anomalies, and mental retardation were considered uncommon. Van Haelst et al. (2007) suggested that the diagnosis of Fraser syndrome can be made if either 3 major criteria, or 2 major and 2 minor criteria, or 1 major and 3 minor criteria are present in a patient.
The prognosis for children with NMDs varies depending on the specific disorder and the degree of brain abnormality and subsequent neurological signs and symptoms.
Treatment is symptomatic, and may include anti-seizure medication and special or supplemental education consisting of physical, occupational, and speech therapies.
The prognosis of this developmental disorder is highly based on the underlying disorder. Cerebellar hypoplasia may be progressive or static in nature. Some cerebellar hypoplasia resulting from congenital brain abnormalities/malformations are not progressive. Progressive cerebellar hypoplasia is known for having poor prognosis, but in cases where this disorder is static, prognosis is better.
Laboratory investigations usually show elevated creatine kinase, myopathic/dystrophic muscle pathology and altered α-dystroglycan. Antenatal diagnosis is possible in families with known mutations. Prenatal ultrasound may be helpful for diagnosis in families where the molecular defect is unknown.
It is suggested that the diagnostic criteria for Malpuech syndrome should include cleft lip and/or palate, typical associated facial features, and at least two of the following: urogenital anomalies, caudal appendage, and growth or developmental delay.
Due to the relatively high rate of hearing impairment found with the disorder, it too may be considered in the diagnosis. Another congenital disorder, Wolf-Hirschhorn (Pitt-Rogers-Danks) syndrome, shares Malpuech features in its diagnostic criteria. Because of this lacking differentiation, karyotyping (microscopic analysis of the chromosomes of an individual) can be employed to distinguish the two. Whereas deletions in the short arm of chromosome 4 would be revealed with Wolf-Hirschhorn, a karyotype without this aberration present would favor a Malpuech syndrome diagnosis. Also, the karyotype of an individual with Malpuech syndrome alone will be normal.
Operations to correct the malformations of the skull should be performed within the first year of infancy in patients affected by Carpenter Syndrome. Performing surgery at a young age increases the likelihood of obtaining a greatly improved appearance of the head because modifying bone is much easier to do when the skull is still constantly growing and changing.
In surgery the doctor breaks the fused sutures to allow for brain growth. Doctors remove the cranial plates of the skull, reshape them and replace them back onto the skull in an attempt to reshape the head to appear more normal. Although the sutures are broken during surgery they will quickly refuse, and in some cases holes form in the plates allowing cerebral spinal fluid to escape into cyst like structures on the external surface of the head.
If an individual with Carpenter Syndrome has a serious heart defect they will require surgery to correct the malformation of the heart. Other elective surgeries may also be performed. Some parents opt to have their child’s webbed fingers or toes separated which improves their appearance but not necessarily the functionality of the digits. In order to address the occupational challenges of the disease, many children with Carpenter Syndrome go through speech and occupational therapy in order to achieve more independence in everyday tasks and activities (RN, 2007).
In order to address the vision problems that are associated with bicoronal craniosynostosis, the individual must seek consultation from an ophthalmologist. If the palate is severely affected dental consultation may be necessary to correct the malformation. Obesity is often associated with Carpenter Syndrome, so a lifelong diet plan is often utilized to maintain a healthy weight. In addition surgery must be performed if the testes fail to descend (Paul A. Johnson, 2002). If the procedure is not performed the individual will become infertile.