Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Prenatal screening is not typically done for FHM, however it may be performed if requested. As penetrance is high, individuals found to carry mutations should be expected to develop signs of FHM at some point in life.
Familial dysautonomia is inherited in an autosomal recessive pattern, which means 2 copies of the gene in each cell are altered. If both parents are shown to be carriers by genetic testing, there is a 25% chance that the child will produce FD. Prenatal diagnosis for pregnancies at increased risk for FD by amniocentesis (for 14–17 weeks) or chorionic villus sampling (for 10–11 weeks) is possible.
In terms of the diagnosis of Romano–Ward syndrome the following is done to ascertain the condition(the "Schwartz Score" helps in so doing):
- Exercise test
- ECG
- Family history
Diagnosis of FHM is made according to the following criteria:
- Two attacks of each of the following:
- At least one close (first or second degree) relative with FHM
- No other likely cause
Sporadic forms follow the same diagnostic criteria, with the exception of family history.
In all cases, family and patient history is used for diagnosis. Brain imaging techniques, such as MRI, CAT scans and SPECT, are used to look for signs of other familial conditions such as CADASIL or mitochondrial disease, and for evidence of cerebellar degeneration. With the discovery of causative genes, genetic sequencing can also be used to verify diagnosis (though not all genetic loci are known).
Genetic testing is performed on a small sample of blood from the tested individual. The DNA is examined with a designed probe specific to the known mutations. The accuracy of the test is above 99%. Dr. Anat Blumenfeld of the Hadasah Medical center in Jerusalem identified chromosome number 9 as the responsible chromosome.
Although patients will often mistake the pain of Tietze's syndrome for a myocardial infarction (heart attack), the syndrome does not progress to cause harm to any organs.
It is important to rule out a heart attack, as the symptoms may be similar. After assessment, providers often reassure patients that their symptoms are not associated with a heart attack, although they may need to treat the pain, which in some cases can be severe enough to cause significant but temporary disability to the patient.
Recent diagnostic criteria have been published out of the Arrhythmia Research Laboratory at the University of Ottawa Heart Institute from Drs. Michael H Gollob and Jason D Roberts.
The Short QT Syndrome diagnostic criterion is based on a point system as follows:
QTc in milliseconds
Jpoint-Tpeak interval
Clinical History
Family History
Genotype
Patients are deemed high-probability (> or equal to 4 points), intermediate probability (3 points) or low probability (2 or less points).
Treatment for Romano–Ward syndrome can "deal with" the imbalance between the right and left sides of the sympathetic nervous system which may play a role in the cause of this syndrome. The imbalance can be temporarily abolished with a left stellate ganglion block, which shorten the QT interval. If this is successful, surgical ganglionectomy can be performed as a permanent treatment.Ventricular dysrhythmia may be managed by beta-adrenergic blockade (propranolol)
Traditional autonomic testing is used to aid in the diagnosis of AAG. These tests can include a Tilt Table Test (TTT), thermoregulatory sweat test (TST), quantitative sudomotor autonomic reflex testing (QSART) and various blood panels. Additionally, a blood test showing high levels of the antibody ganglionic nicotenic acetylcholine receptor (gAChr) occur in about 50% of patients with AAG (seropositive AAG). The seronegative patients (those without detectable gAChR levels) are theorized to have one or more different antibodies responsible for the autonomic dysfunction. However, both seropositive and seronegative patients have been seen to respond to the same treatments. A paraneoplastic panel may also be ordered to rule out paraneoplastic syndrome.
Prenatal screening is not typically done for FHM, however it may be performed if requested. As penetrance is high, individuals found to carry mutations should be expected to develop signs of FHM at some point in life.
No formal diagnostic criteria exist. A diagnosis of Inappropriate sinus tachycardia is primarily one of exclusion and the following may be observed:
- Exclusion of all other causes of sinus tachycardia
- Common forms of supraventricular tachycardia (SVT) must be excluded
- Normal P wave morphology
- A resting sinus tachycardia is usually (but not always) present
- Nocturnal dip in heart rate
- Inappropriate heart rate response on exertion
- Mean heart rate in 24hrs >95 bpm
- Symptoms are documented to be due to tachycardia
- Hypotension is occasionally observed
- Syncope (fainting) is occasionally reported
Affected patients demonstrate no structural problems of the heart upon echocardiographic, CT or MRI imaging.
CPVT diagnosis is based on reproducing irregularly shaped ventricular arrhythmias during ECG exercise stress testing, syncope occurring during physical activity and acute emotion, and a history of exercise or emotion-related palpitations and dizziness with an absence of structural cardiac abnormalities.
Because its symptoms are usually only triggered when the body is subjected to intense emotional or physical stress, the condition is often not detected by the traditional methods of electrophysiologic examination such as a resting electrocardiogram.
OI is "notoriously difficult to diagnose." As a result, many patients have gone undiagnosed or misdiagnosed and either untreated or treated for other disorders. Current tests for OI (Tilt table test, autonomic assessment, and vascular integrity) can also specify and simplify treatment. (See Dr. Julian Stewart's article, "Orthostatic Intolerance: An Overview" for a more detailed description of OI tests.)
While the true causes of Tietze's syndrome are not well understood, it often results from a physical strain or minor injury, such as repeated coughing, sneezing, vomiting, or impacts to the chest. It has even been known to occur after hearty bouts of laughter. It can occur by over exerting or by an injury in the chest and breast.
Psychological stress can exacerbate Tietze's syndrome, but there is no evidence to suggest that it is a direct cause.
Patients who have had radiation therapy to the chest/breast will often experience this syndrome which can occur shortly after therapy or years later.
It is found more often in teens than adults.
Diagnosis of cerebrovascular disease is done by (among other diagnoses):
- clinical history
- physical exam
- neurological examination.
It is important to differentiate the symptoms caused by a stroke from those caused by syncope (fainting) which is also a reduction in cerebral blood flow, almost always generalized, but they are usually caused by systemic hypotension of various origins: cardiac arrhythmias, myocardial infarction, hemorrhagic shock, among others.
"See the equivalent section in the main migraine article."
People with FHM are encouraged to avoid activities that may trigger their attacks. Minor head trauma is a common attack precipitant, so FHM sufferers should avoid contact sports. Acetazolamide or standard drugs are often used to treat attacks, though those leading to vasoconstriction should be avoided due to the risk of stroke.
About 20–30% of the population report to have experienced dizziness at some point in the previous year.
ARVD is an autosomal dominant trait with reduced penetrance. Approximately 40–50% of ARVD patients have a mutation identified in one of several genes encoding components of the desmosome, which can help confirm a diagnosis of ARVD. Since ARVD is an autosomal dominant trait, children of an ARVD patient have a 50% chance of inheriting the disease causing mutation. Whenever a mutation is identified by genetic testing, family-specific genetic testing can be used to differentiate between relatives who are at-risk for the disease and those who are not. ARVD genetic testing is clinically available.
The risk for untreated LQTS patients having events (syncopes or cardiac arrest) can be predicted from their genotype (LQT1-8), gender, and corrected QT interval.
- High risk (> 50%) - QTc > 500 ms, LQT1, LQT2, and LQT3 (males)
- Intermediate risk (30-50%) - QTc > 500 ms, LQT3 (females) or QTc < 500 ms, LQT2 (females) and LQT3
- Low risk (< 30%) - QTc < 500 ms, LQT1 and LQT2 (males)
A 1992 study reported that mortality for symptomatic, untreated patients was 20% within the first year and 50% within the first 10 years after the initial syncope.
Prognostics factors:
Lower Glasgow coma scale score, higher pulse rate, higher respiratory rate and lower arterial oxygen saturation level is prognostic features of in-hospital mortality rate in acute ischemic stroke.
In addition to the mechanism described above, a number of other medical conditions may cause syncope. Making the correct diagnosis for loss of consciousness is difficult. The core of the diagnosis of vasovagal syncope rests upon a clear description of a typical pattern of triggers, symptoms, and time course.
It is pertinent to differentiate lightheadedness, seizures, vertigo, and low blood sugar as other causes.
In people with recurrent vasovagal syncope, diagnostic accuracy can often be improved with one of the following diagnostic tests:
- A tilt table test (results should be interpreted in the context of patients' clinical presentations and with an understanding of the sensitivity and specificity of the test)
- Implantation of an insertable loop recorder
- A Holter monitor or event monitor
- An echocardiogram
- An electrophysiology study
Currently, some individuals with short QT syndrome have had implantation of an implantable cardioverter-defibrillator (ICD) as a preventive action, although it has not been demonstrated that heart problems have occurred before deciding to implant an ICD.
A recent study has suggested the use of certain antiarrhythmic agents, particularly quinidine, may be of benefit in individuals with short QT syndrome due to their effects on prolonging the action potential and by their action on the I channels. Some trials are currently under way but do not show a longer QT statistically.
The most important determinant of the neurodiagnostic procedures is the state of the child at the time of first medical attendance:
(1) The child has a brief or lengthy seizure of Panayiotopoulos syndrome but fully recovers prior to arriving in the accident and emergency department or being seen by a physician. A child with the distinctive clinical features of Panayiotopoulos syndrome, particularly ictus emeticus and lengthy seizures, may not need any investigations other than EEG. However, because approximately 10% to 20% of children with similar seizures may have brain pathology, an MRI may be needed.
(2) The child with a typical lengthy seizure of Panayiotopoulos syndrome partially recovers while still in a postictal stage, tired, mildly confused, and drowsy on arrival to the accident and emergency department or when seen by a physician. The child should be kept under medical supervision until fully recovered, which usually occurs after a few hours of sleep. Then guidelines are the same as in (1) above.
(3) The child is brought to the accident and emergency department or is seen by a physician while ictal symptoms continue. This is the most difficult and challenging situation. There may be dramatic symptoms accumulating in succession, which demand rigorous and experienced evaluation. The seizure may be very dramatic, with symptoms accumulating in succession, convulsions may occur and a child who becomes unresponsive and flaccid demands rigorous and experienced evaluation. The most prominent acute disorders in the differential diagnosis include encephalitis or an encephalopathic state from causes such as infections, metabolic derangement (either inborn error or others such as hypoglycaemia), raised intracranial pressure and so forth. A history of a previous similar seizure is reassuring and may prevent further procedures.
Electroencephalography (EEG). EEG is the only investigation with abnormal results, usually showing multiple spikes in various brain locations (Figure). There is marked variability of interictal EEG findings from normal to multifocal spikes that also change significantly in serial EEGs. Occipital spikes are common but not necessary for diagnosis. Frontal or centrotemporal spikes may be the only abnormality. Generalised discharges may happen alone or together with focal spikes. A few children have consistently normal EEG, including sleep EEG. EEG abnormalities may persist for many years after clinical remission. Conversely, spikes may appear only once in successive EEGs. Series of EEGs of the same child may present with all of the above variations from normal to very abnormal. EEG abnormalities do not appear to determine clinical manifestations, duration, severity, and frequency of seizures or prognosis.
There are now significant reports of ictal EEGs in 20 cases, which objectively document the seizures of Panayiotopoulos syndrome and their variable localisation at onset. All these recorded seizures occurred while the children were asleep. The onset of the electrical ictal discharge was mainly occipital (7 cases) or frontal (7 cases)and consisted of rhythmic monomorphic decelerating theta or delta activity with small spikes. The first clinical manifestation which appeared long (1–10 minutes) after the electrical onset, usually consisted of opening of the eyes as if the children were waking from sleep. At this stage, usually the children responded, often correctly, to simple questions. On many occasions, tachycardia was the first objective sign when ||ECG|| was recorded. Vomiting was a common ictal symptom occurring at any stage of the seizures but not as the first clinical manifestation. Seizures associated with ictal vomiting did not have any particular localization or lateralization. Vomiting occurred mainly when the ictal discharges were more diffuse than localized. Sometimes only retching without vomiting occurred, and on a few occasions, vomiting did not occur. Other autonomic manifestations included mydriasis, pallor, cyanosis, tachypnea, hypersalivation, and perspiration at various stages of the ictus. Of non-autonomic manifestations, deviation of eyes to the right or left occurred before or after vomiting without any apparent EEG localisation; it was present in seizures starting from the occipital or frontal regions.
Magnetoencephalography (MEG). The multifocal nature of epileptogenicity in Panayiotopoulos syndrome has been also documented with MEG, which revealed that the main epileptogenic areas are along the parietal-occipital, the calcarine, or the central (rolandic) sulci. Patients with frontal spikes were significantly older than patients with spikes on rolandic, parieto-occipital, or calcarine sulci. Follow-up MEG demonstrated shifting localization or disappearance of MEG spikes.
IST has been treated both pharmacologically and invasively, with varying degrees of success. IST, in and of itself, is not indicative of higher rates of mortality, and non-treatment is an option chosen by many if they have minimal symptoms.
Some types of medication tried by cardiologists and other physicians include: beta blockers, selective sinus node I channel inhibitors (ivabradine), calcium channel blockers and antiarrhythmic agents. Some SSRI drugs are also occasionally tried and also treatments more commonly used to treat postural orthostatic tachycardia syndrome such as fludrocortisone. This approach is very much "trial-and-error". Patients with IST are often intolerant to beta blockers. A new selective sinus node inhibitor ivabradine is also being used to treat IST.
Invasive treatments include forms of catheter ablation such as sinus node modification (selective ablation of the sinus node), complete sinus node ablation (with associated implantation of a permanent artificial pacemaker) and AV node ablation in very resistant cases (creation of iatrogenic complete heart block, necessitating implantation of a permanent artificial pacemaker).
However invasive treatments can also make the symptoms worse, not cure it. Treatment should be chosen with care as the patient could become in need of a pacemaker or have more extensive symptoms.
Where an underlying neoplasm is the cause, treatment of this condition is indicated in order to reduce progression of symptoms. For cases without a known cause, treatment involves suppression of the immune system with corticosteroid treatment, intravenous immunoglobulin, immunosuppressive agents like Rituximab, Cellcept, or Imuran or plasmapheresis.