Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Gingivitis is a category of periodontal disease in which there is no loss of bone but inflammation and bleeding are present.
Each tooth is divided into four gingival units (mesial, distal, buccal, and lingual) and given a score from 0-3 based on the gingival index. The four scores are then averaged to give each tooth a single score.
The diagnosis of the periodontal disease gingivitis is done by a dentist. The diagnosis is based on clinical assessment data acquired during a comprehensive periodontal exam. Either a registered dental hygienist or a dentist may perform the comprehensive periodontal exam but the data interpretation and diagnosis are done by the dentist. The comprehensive periodontal exam consists of a visual exam, a series of radiographs, probing of the gingiva, determining the extent of current or past damage to the periodontium and a comprehensive review of the medical and dental histories.
Current research shows that activity levels of the following enzymes in saliva samples are associated with periodontal destruction: aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma glutamyl transferase (GGT), alkaline phosphatase (ALP), and acid phosphatase (ACP). Therefore, these enzyme biomarkers may be used to aid in the diagnosis and treatment of gingivitis and periodontitis.
A dental hygienist or dentist will check for the symptoms of gingivitis, and may also examine the amount of plaque in the oral cavity. A dental hygienist or dentist will also look for signs of periodontitis using X-rays or periodontal probing as well as other methods.
If gingivitis is not responsive to treatment, referral to a periodontist (a specialist in diseases of the gingiva and bone around teeth and dental implants) for further treatment may be necessary.
Daily oral hygiene measures to prevent periodontal disease include:
- Brushing properly on a regular basis (at least twice daily), with the patient attempting to direct the toothbrush bristles underneath the gumline, helps disrupt the bacterial-mycotic growth and formation of subgingival plaque.
- Flossing daily and using interdental brushes (if the space between teeth is large enough), as well as cleaning behind the last tooth, the third molar, in each quarter
- Using an antiseptic mouthwash: Chlorhexidine gluconate-based mouthwash in combination with careful oral hygiene may cure gingivitis, although they cannot reverse any attachment loss due to periodontitis.
- Using periodontal trays to maintain dentist-prescribed medications at the source of the disease: The use of trays allows the medication to stay in place long enough to penetrate the biofilms where the microorganism are found.
- Regular dental check-ups and professional teeth cleaning as required: Dental check-ups serve to monitor the person's oral hygiene methods and levels of attachment around teeth, identify any early signs of periodontitis, and monitor response to treatment.
- Microscopic evaluation of biofilm may serve as a guide to regaining commensal health flora.
Typically, dental hygienists (or dentists) use special instruments to clean (debride) teeth below the gumline and disrupt any plaque growing below the gumline. This is a standard treatment to prevent any further progress of established periodontitis. Studies show that after such a professional cleaning (periodontal debridement), microbial plaque tends to grow back to precleaning levels after about three to four months. Nonetheless, the continued stabilization of a patient's periodontal state depends largely, if not primarily, on the patient's oral hygiene at home, as well as on the go. Without daily oral hygiene, periodontal disease will not be overcome, especially if the patient has a history of extensive periodontal disease.
Periodontal disease and tooth loss are associated with an increased risk, in male patients, of cancer.
Contributing causes may be high alcohol consumption or a diet low in antioxidants.
There are two main methods of detecting dental plaque in the oral cavity: through the application of a disclosing gel or tablet, and/or visually through observation. Plaque detection is usually detected clinically by plaque disclosing agents. Disclosing agents contain dye which turns bright red to indicate plaque build-up.
It is important for an individual to be aware of what to look for when doing a self-assessment for dental plaque. It is important to be aware that everyone has dental plaque, however, the severity of the build-up and the consequences of not removing the plaque can vary.
Gingivitis can be prevented through regular oral hygiene that includes daily brushing and flossing. Hydrogen peroxide, saline, alcohol or chlorhexidine mouth washes may also be employed. In a 2004 clinical study, the beneficial effect of hydrogen peroxide on gingivitis has been highlighted.
Rigorous plaque control programs along with periodontal scaling and curettage also have proved to be helpful, although according to the American Dental Association, periodontal scaling and root planing are considered as a treatment for periodontal disease, not as a preventive treatment for periodontal disease. In a 1997 review of effectiveness data, the U.S. Food and Drug Administration (FDA) found clear evidence showing that toothpaste containing triclosan was effective in preventing gingivitis.
Plaque disclosing products, also known as disclosants, make plaque clinically visible. Clean surfaces of the teeth do not absorb the disclosant, only rough surfaces. Plaque disclosing gels can be either completed at home or in the dental clinic. Before using these at home or in the dental clinic check with your general practitioners for any allergies to iodine, food colouring or any other ingredients that may be present in these products. These gels provide a visual aid in assessing plaque biofilm presence and can also show the maturity of the dental plaque.
Systemic antibiotics such as amoxicillin or metronidazole are sometimes used in addition to debridement based treatments.
"Systemic antimicrobials in conjunction with scaling and root planing (SRP), can offer an additional benefit over SRP alone in the treatment of periodontitis, in terms of clinical attachment loss (CAL) and probing pocket depth (PPD) change, and reduced risk of additional CAL loss. However, differences in study methodology and lack of data precluded an adequate and complete pooling of data for a more comprehensive analyses. It was difficult to establish definitive conclusions, although patients with deep pockets, progressive or 'active' disease, or specific microbiological profile, can benefit more from this adjunctive therapy."
An examination by the dentist or dental hygienist should be sufficient to rule out the issues such as malnutrition and puberty. Additional corresponding diagnosis tests to certain potential disease may be required. This includes oral glucose tolerance test for diabetes mellitus, blood studies, human gonadotrophin levels for pregnancy, and X-rays for teeth and jaw bones.
In order to determine the periodontal health of a patient, the dentist or dental hygienist records the sulcular depths of the gingiva and observes any bleeding on probing. This is often accomplished with the use of a periodontal probe. Alternatively, dental floss may also be used to assess the Gingival bleeding index. It is used as an initial evaluation on patient's periodontal health especially to measure gingivitis. The number of bleeding sites is used to calculate the gingival bleeding score.
Peer-reviewed dental literature thoroughly establishes that bleeding on probing is a poor positive predictor of periodontal disease, but conversely lack of bleeding is a very strong negative predictor. The clinical interpretation of this research is that while BOP presence may not indicate periodontal disease, continued absence of BOP is a strong predictor (approximately 98%) of continued periodontal health.
Treatment options include antibiotic therapy (not a permanent solution), endodontic (root canal) therapy, or extraction.
There is professional agreement among dentists that smoking cessation and good oral hygiene are key to effective treatment and positive outcomes for patients.
The typical initial treatment known to be effective is scaling and root planing (SRP) to mechanically debride the depths of the periodontal pocket and disrupt the biofilm present. This is done using a powered ultrasonic or sonic scaler and/or unpowered hand instruments.
"In patients with chronic periodontitis, subgingival debridement (in conjunction with supragingival plaque control) is an effective treatment in reducing probing pocket depth and improving the clinical attachment level. In fact it is more effective than supragingival plaque control alone".
Full mouth disinfection protocols are favoured by some clinicians. There is no evidence that full mouth disinfection or full mouth scaling protocols improve the outcome when compared to standard mechanical scaling and root planing.
Open flap debridement is used by some practitioners particularly in deeper pocket areas. The advantages of this approach is better visualization of the root surface to be cleaned. This must be weighed against the risks of surgery. Open flap surgery is more effective than non-surgical periodontal therapy in deep pocketing : "Both scaling and root planing alone and scaling and root planing combined with flap procedure are effective methods for the treatment of chronic periodontitis in terms of attachment level gain and reduction in gingival inflammation. In the treatment of deep pockets open flap debridement results in greater PPD reduction and clinical attachment gain."
Guided tissue regeneration (GTR) using PTFE membranes is favoured by some practitioners, despite its cost and complexity: "GTR has a greater effect on probing measures of periodontal treatment than open flap debridement, including improved attachment gain, reduced pocket depth, less increase in gingival recession and more gain in hard tissue probing at re-entry surgery. However there is marked variability between studies and the clinical relevance of these changes is unknown. As a result, it is difficult to draw general conclusions about the clinical benefit of GTR. Whilst there is evidence that GTR can demonstrate a significant improvement over conventional open flap surgery, the factors affecting outcomes are unclear from the literature and these might include study conduct issues such as bias. Therefore, patients and health professionals need to consider the predictability of the technique compared with other methods of treatment before making final decisions on use."
Enamel matrix derivative (EMD) is favoured by some practitioners despite its high cost: "One year after its application, EMD significantly improved probing attachment levels (1.1 mm) and probing pocket depth reduction (0.9 mm) when compared to a placebo or control, however, the high degree of heterogeneity observed among trials suggests that results have to be interpreted with great caution. In addition, a sensitivity analysis indicated that the overall treatment effect might be overestimated. The actual clinical advantages of using EMD are unknown. With the exception of significantly more postoperative complications in the GTR group, there was no evidence of clinically important differences between GTR and EMD. Bone substitutes may be associated with less gingival recession than EMD."
Dentists and dental hygienists measure periodontal disease using a device called a periodontal probe. This thin "measuring stick" is gently placed into the space between the gums and the teeth, and slipped below the gumline. If the probe can slip more than below the gumline, the patient is said to have a gingival pocket if no migration of the epithelial attachment has occurred or a periodontal pocket if apical migration has occurred. This is somewhat of a misnomer, as any depth is, in essence, a pocket, which in turn is defined by its depth, i.e., a 2-mm pocket or a 6-mm pocket. However, pockets are generally accepted as self-cleansable (at home, by the patient, with a toothbrush) if they are 3 mm or less in depth. This is important because if a pocket is deeper than 3 mm around the tooth, at-home care will not be sufficient to cleanse the pocket, and professional care should be sought. When the pocket depths reach in depth, the hand instruments and cavitrons used by the dental professionals may not reach deeply enough into the pocket to clean out the microbial plaque that causes gingival inflammation. In such a situation, the bone or the gums around that tooth should be surgically altered or it will always have inflammation which will likely result in more bone loss around that tooth. An additional way to stop the inflammation would be for the patient to receive subgingival antibiotics (such as minocycline) or undergo some form of gingival surgery to access the depths of the pockets and perhaps even change the pocket depths so they become 3 mm or less in depth and can once again be properly cleaned by the patient at home with his or her toothbrush.
If patients have 7-mm or deeper pockets around their teeth, then they would likely risk eventual tooth loss over the years. If this periodontal condition is not identified and the patients remain unaware of the progressive nature of the disease, then years later, they may be surprised that some teeth will gradually become loose and may need to be extracted, sometimes due to a severe infection or even pain.
According to the Sri Lankan tea laborer study, in the absence of any oral hygiene activity, approximately 10% will suffer from severe periodontal disease with rapid loss of attachment (>2 mm/year). About 80% will suffer from moderate loss (1–2 mm/year) and the remaining 10% will not suffer any loss.
Diagnosis is usually clinical. Smear for fusospirochaetal bacteria and leukocytes; blood picture occasionally. The important differentiation is with acute leukaemia or herpetic stomatitis.
Periapical periodontitis of some form is a very common condition. The prevalence of periapical periodontitis is generally reported to vary according to age group, e.g. 33% in those aged 20–30, 40% in 30- to 40-year-olds, 48% in 40- to 50-year-olds, 57% in 50- to 60-year-olds and 62% in those over the age of 60. Most epidemiologic data has been generated in European countries, especially Scandinavia. Millions of root canal treatments are carried out in the United States each year, although the total number of root canal treatments is an imperfect indicator of the prevalence of periapical periodontitis, since not always is it performed due to the presence of periapacial periodontitis, and not all cases of asymptomatic periodontitis will be treated in this manner, either due to lack of patient attendance or watchful waiting.
For those patients with periodontitis as a manifestation of hematologic disorders, coordination with the patient's physician is instrumental in planning periodontal treatment. Therapy should be avoided during periods of exacerbation of the malignancy or during active phases of chemotherapy, and antimicrobial therapy might be considered when urgent treatment must be performed when granulocyte counts are low.
Treatment includes irrigation and debridement of necrotic areas (areas of dead and/or dying gum tissue), oral hygiene instruction and the uses of mouth rinses and pain medication. If there is systemic involvement, then oral antibiotics may be given, such as metronidazole. As these diseases are often associated with systemic medical issues, proper management of the systemic disorders is appropriate.
The diagnosis of DH may be challenging. It is a diagnosis of exclusion, reached once all other possible explanations for the pain have been ruled out. A thorough patient history and clinical examination are required. The examination includes a pain provocation test by blasting air from a dental instrument onto the sensitive area, or gentle scratching with a dental probe. If a negative result for the pain provocation test occurs, no treatment for dentinal hypersensitivity is indicated and another diagnosis should be sought, such as other causes of orofacial pain.
Inflammation of the dental pulp, termed pulpitis, produces true hypersensitivity of the nerves in the dental pulp. Pulpitis is classified as "irreversible" when pulpal inflammation will irreversibly progress to pulpal necrosis due to compression of the venous microcirculation and tissue ischemia, and "reversible" when the pulp is still capable of returning to a healthy, non-inflamed state, although usually dental treatment is required for this. Irreversible pulpitis is readily distinguishable from DH. There is poorly localized, severe pain which is aggravated by thermal stimuli, and which continues after the stimulus is removed. There also is typically spontaneous pain without any stimulus. Reversible pulpitis may not be so readily distinguishable from DH, however usually there will be some obvious sign such as a carious cavity, crack, etc. which indicates pulpitis. In contrast to pulpitis, the pain of DH is short and sharp.
Pulp sensibility tests are routinely used in the diagnosis of dental disease. There are 2 general types:
- Thermal-- most commonly, ethyl chloride sprayed onto a small ball of cotton wool, which produces intense cold. Alternatively gutta percha can be heated to produce heat.
- Electrical pulp test-- electric pulp testing (EPT) has been available for over a century and used by dentists worldwide. It is used to determine the health of the pulp and pulp-related pain. It does not provide information on vascular supply to the pulp. EPT produces electrical stimuli that cause an ionic change across the neural membrane, inducing an action potential in myelinated nerves. The threshold of pain level will be determined by increasing the voltage. The requirements of an EPT are appropriate application method, careful interpretation of the results, and an appropriate stimulus. The tests must be done with tooth isolation and conduction media. EPT is not recommended for patients with orthodontic bands or crowned teeth. Key factors in testing are the enamel and dentine thickness and the number of nerve fibers underlying the pulp. Pulp nerve fibers respond to lower current intensities and a small number of pulpal afferents, creating neural responses when electrical stimulation is applied. EPTs may be unreliable and lead to false-positive and false-negative results. False-positive responses in teeth may be attributed to pulpal necrosis. Also, since pulpal and periodontal nerve thresholds may overlap, the periodontal nerves may give a false indication in tooth sensibility.
Possible explanations for false-positives include:
- Response caused by conduction of the current because of periodontal or gingival issues
- Breakdown products associated with pulp necrosis may be able to conduct electric current next to infected and hypersensitive pulp tissue
- Inflamed pulp tissue may still be present
- Metallic restorations or orthodontic gear are still present
Studies have indicated that there is little correlation between histopathological status of the pulp and clinical information. A negative EPT response showed localized necrosis in 25.7% of cases and 72% of cases. Thus, 97.7% of cases with a negative response to EPT indicated that a root canal treatment should be carried out.
Dry socket typically causes pain on the second to fourth day following a dental extraction. Other causes of post extraction pain usually occur immediately after the anesthesia/analgesia has worn off, (e.g., normal pain from surgical trauma or mandibular fracture) or has a more delayed onset (e.g., osteomyelitis, which typically causes pain several weeks following an extraction). Examination typically involves gentle irrigation with warm saline and probing of the socket to establish the diagnosis. Sometimes part of the root of the tooth or a piece of bone fractures off and is retained in the socket. This can be another cause of pain in a socket, and causes delayed healing. A dental radiograph (x-ray) may be indicated to demonstrate such a suspected fragment.
Dentin hypersensitivity may affect individuals' quality of life. Over time, the dentin-pulp complex may adapt to the decreased insulation by laying down tertiary dentin, thereby increasing the thickness between the pulp and the exposed dentin surface and lessening the symptoms of hypersensitivity. Similar process such as formation of a smear layer (e.g. from toothbrushing) and dentin sclerosis. These physiologic repair mechanisms are likely to occur with or without any form of treatment, but they take time.
There are very few ways to test a patient for HGF. Currently, the most common way to diagnose a patient is by means of a physical evaluation. The physician can make a physical evaluation of the patient and send them to a dentist or better yet a specialist like a periodontist to evaluate signs of gingival overgrowth, quality of gingiva, inflammation, mechanical difficulties of the mouth, tooth conditions, and any sort of discomfort.
Aside from obvious physical symptoms seen in a physical evaluation, molecular tests can be run to check if there is a mutation in the SOS1 gene to confirm the diagnosis. If there is indeed a mutation in this gene coupled with the typical physical symptoms, then it is quite probable that a patient suffers from this disease. Also, looking at family history is also becoming more prominent in aiding to diagnose the patient. Otherwise, researchers are working to find new and better ways to test for the presence of HGF.
Any tooth that is identified, in either the history of pain or base clinical exam, as a source for toothache may undergo further testing for vitality of the dental pulp, infection, fractures, or periodontitis. These tests may include:
- Pulp sensitivity tests, usually carried out with a cotton wool sprayed with ethyl chloride to serve as a cold stimulus, or with an electric pulp tester. The air spray from a three-in-one syringe may also be used to demonstrate areas of dentin hypersensitivity. Heat tests can also be applied with hot Gutta-percha. A healthy tooth will feel the cold but the pain will be mild and disappear once the stimulus is removed. The accuracy of these tests has been reported as 86% for cold testing, 81% for electric pulp testing, and 71% for heat testing. Because of the lack of test sensitivity, a second symptom should be present or a positive test before making a diagnosis.
- Radiographs utilized to find dental caries and bone loss laterally or at the apex.
- Assessment of biting on individual teeth (which sometimes helps to localize the problem) or the separate cusps (may help to detect cracked cusp syndrome).
Less commonly used tests might include trans-illumination (to detect congestion of the maxillary sinus or to highlight a crack in a tooth), dyes (to help visualize a crack), a test cavity, selective anaesthesia and laser doppler flowmetry.
A systematic review reported that there is some evidence that rinsing with chlorhexidine (0.12% or 0.2%) or placing chlorhexidine gel (0.2%) in the sockets of extracted teeth reduces the frequency of dry socket. Another systematic review concluded that there is evidence that prophylactic antibiotics reduce the risk of dry socket (and infection and pain) following third molar extractions of wisdom teeth, however their use is associated with an increase in mild and transient adverse effects. The authors questioned whether treating 12 patients with antibiotics to prevent one infection would do more harm overall than good, in view of the potential side effects and also of antibiotic resistance. Nevertheless, there is evidence that in individuals who are at clear risk may benefit from antibiotics. There is also evidence that antifibrinolytic agents applied to the socket after the extraction may reduce the risk of dry socket.
Some dentists and oral surgeons routinely debride the bony walls of the socket to encourage hemorrhage (bleeding) in the belief that this reduces the incidence of dry socket, but there is no evidence to support this practice. It has been suggested that dental extractions in females taking oral contraceptives be scheduled on days without estrogen supplementation (typically days 23–28 of the menstrual cycle). It has also been suggested that teeth to be extracted be scaled prior to the procedure.
Prevention of alveolar osteitis can be exacted by following post-operative instructions, including:
1. Taking any recommended medications
2. Avoiding intake of hot fluids for one to two days. Hot fluids raise the local blood flow and thus interfere with organization of the clot. Therefore, cold fluids and foods are encouraged, which facilitate clot formation and prevent its disintegration.
3. Avoiding smoking. It reduces the blood supply, leading to tissue ischemia, reduced tissue perfusion and eventually higher incidence of painful socket.
4. Avoiding drinking through a straw or spitting forcefully as this creates a negative pressure within the oral cavity leading to an increased chance of blood clot instability.
Once the pulp has become inflamed, the tooth can be diagnostically divided into two categories.
- Reversible pulpitis
- Irreversible pulpitis
The College of Registered Dental Hygienists of Alberta (CRDHA) defines a dental hygienist as "a health care professional whose work focuses on the oral health of an individual or community." These dental professionals aim to improve oral health by educating patients on the prevention and management of oral disease. Dental hygienists can be found performing oral health services in various settings, including private dental offices, schools, and other community settings, such as long-term care facilities. As mentioned above in the clinical significance section, plaque and calculus deposits are a major etiological factor in the development and progression of oral disease. An important part of the scope of practice of a dental hygienist is the removal of plaque and calculus deposits. This is achieved through the use of specifically designed instruments for debridement of tooth surfaces. Treatment with these types of instruments is necessary as calculus deposits cannot be removed by brushing or flossing alone. To effectively manage disease or maintain oral health, thorough removal of calculus deposits should be completed at frequent intervals. The recommended frequency of dental hygiene treatment can be made by a registered professional, and is dependent on individual patient needs. Factors that are taken into consideration include an individual's overall health status, tobacco use, amount of calculus present, and adherence to a professionally recommended home care routine.
Hand instruments are specially designed tools used by dental professionals to remove plaque and calculus deposits that have formed on the teeth. These tools include scalers, curettes, jaquettes, hoes, files and chisels. Each type of tool is designed to be used in specific areas of the mouth. Some commonly used instruments include sickle scalers which are designed with a pointed tip and are mainly used supragingivally. Curettes are mainly used to remove subgingival calculus, smooth root surfaces and to clean out periodontal pockets. Curettes can be divided into two subgroups: universals and area specific instruments. Universal curettes can be used in multiple areas, while area specific instruments are designed for select tooth surfaces. Gracey curettes are a popular type of area specific curettes. Due to their design, area specific curettes allow for better adaptation to the root surface and can be slightly more effective than universals. Hoes, chisels, and files are less widely used than scalers and curettes. These are beneficial when removing large amounts of calculus or tenacious calculus that cannot be removed with a curette or scaler alone. Chisels and hoes are used to remove bands of calculus, whereas files are used to crush burnished or tenacious calculus.
For hand instrumentation to be effective and efficient, it is important for clinicians to ensure that the instruments being used are sharp. It is also important for the clinician to understand the design of the hand instruments to be able to adapt them properly.
Ultrasonic scalers, also known as power scalers, are effective in removing calculus, stain, and plaque. These scalers are also useful for root planing, curettage, and surgical debridement. Not only is tenacious calculus and stain removed more effectively with ultrasonic scalers than with hand instrumentation alone, it is evident that the most satisfactory clinical results are when ultrasonics are used in adjunct to hand instrumentation. There are two types of ultrasonic scalers; piezoelectric and magnetostrictive. Oscillating material in both of these handpieces cause the tip of the scaler to vibrate at high speeds, between 18,000 and 50,000 Hz. The tip of each scaler uses a different vibration pattern for removal of calculus. The magnetostrictive power scaler vibration is elliptical, activating all sides of the tip, whereas the piezoelectric vibration is linear and is more active on the two sides of the tip.
Special tips for ultrasonic scalers are designed to address different areas of the mouth and varying amounts of calculus buildup. Larger tips are used for heavy subgingival or supragingival calculus deposits, whereas thinner tips are designed more for definitive subgingival debridement. As the high frequency vibrations loosen calculus and plaque, heat is generated at the tip. A water spray is directed towards the end of the tip to cool it as well as irrigate the gingiva during debridement. Only the first 1–2 mm of the tip on the ultrasonic scaler is most effective for removal, and therefore needs to come into direct contact with the calculus to fracture the deposits. Small adaptations are needed in order to keep the tip of the scaler touching the surface of the tooth, while overlapping oblique, horizontal, or vertical strokes are used for adequate calculus removal.
Current research on potentially more effective methods of subgingival calculus removal focuses on the use of near-ultraviolet (NUV) and near-infrared lasers, such as Er,Cr:YSGG lasers. The use of lasers in periodontal therapy offers a unique clinical advantage over conventional hand instrumentation, as the thin and flexible fibers can deliver laser energy into periodontal pockets that are otherwise difficult to access. Near-infrared lasers, such as the Er,CR:YSGG laser, have been proposed as an effective adjunct for calculus removal as the emission wavelength is highly absorbed by water, a large component of calculus deposits. An optimal output power setting of 1.0-W with the near-infrared Er,Cr:YSGG laser has been shown to be effective for root scaling. Near-ultraviolet (NUV) lasers have also shown promise as they allow the dental professional to remove calculus deposits quickly, without removing underlying healthy tooth structure, which often occurs during hand instrumentation. Additionally, NUV lasers are effective at various irradiation angles for calculus removal. Discrepancies in the efficiency of removal are due to the physical and optical properties of the calculus deposits, not to the angle of laser use. Dental hygienists must receive additional theoretical and clinical training on the use of lasers, where legislation permits.
If there is persistent continuation of inflammation and bleeding, a prescription of antiplaque rinse would be useful.
The diagnosis of cracked tooth syndrome is notoriously difficult even for experienced clinicians. The features are highly variable and may mimic sinusitis, temporomandibular disorders, headaches, ear pain, or atypical facial pain/atypical odontalgia (persistent idiopathic facial pain).
When diagnosing cracked tooth syndrome, a dentist takes many factors into consideration. A bite-test is commonly performed to confirm the diagnosis, in which the patient bites down on either a Q-tip, cotton roll, or an instrument called a Tooth Slooth.