Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
X-ray of the affected wrist is required if a fracture is suspected. Anteroposterior (AP), lateral, and oblique views can be used together to describe the fracture. X-ray of the uninjured wrist should also be taken to determine if there are any normal anatomic variations. Investigation of a potential distal radial fracture includes assessment of the angle of the joint surface on lateral X-ray (volar/dorsal tilt), the loss of length of the radius from the collapse of the fracture (radial length), and congruency of the distal radioulnar joint (DRUJ). Displacement of the articular surface is the most important factor affecting prognosis and treatment. CT scan is often performed to further investigate the articular anatomy of the fracture, especially if surgery is considered. MRI can be considered to evaluate for soft tissue injuries, including damage to the TFCC and the interosseous ligaments.
To assess an olecranon fracture, a careful skin exam is performed to ensure there is no open fracture. Then a complete neurological exam of the upper limb should be documented. Frontal and lateral X-ray views of the elbow are typically done to investigate the possibility of an olecranon fracture. A true lateral x-ray is essential to determine the fracture pattern, degree of displacement, comminution, and the degree of articular involvement.
Diagnosis may be evident clinically when the distal radius is deformed but should be confirmed by X-ray.
The differential diagnosis includes scaphoid fractures and wrist dislocations, which can also co-exist with a distal radius fracture. Occasionally, fractures may not be seen on X-rays immediately after the injury. Delayed X-rays, X-ray computed tomography (CT scan), or Magnetic resonance imaging (MRI) will confirm the diagnosis.
Typically, radiographs are taken of the hip from the front (AP view), and side (lateral view). Frog leg views are to be avoided, as they may cause severe pain and further displace the fracture. In situations where a hip fracture is suspected but not obvious on x-ray, an MRI is the next test of choice. If an MRI is not available or the patient can not be placed into the scanner a CT may be used as a substitute. MRI sensitivity for radiographically occult fracture is greater than CT. Bone scan is another useful alternative however substantial drawbacks include decreased sensitivity, early false negative results, and decreased conspicuity of findings due to age related metabolic changes in the elderly.
As the patients most often require an operation, full pre-operative general investigation is required. This would normally include blood tests, ECG and chest x-ray.
X-rays of the affected hip usually make the diagnosis obvious; AP (anteroposterior) and lateral views should be obtained.
Trochanteric fractures are subdivided into either intertrochanteric (between the greater and lesser trochanter) or pertrochanteric (through the trochanters) by the Müller AO Classification of fractures. Practically, the difference between these types is minor. The terms are often used synonymously. An "isolated trochanteric fracture" involves one of the trochanters without going through the anatomical axis of the femur, and may occur in young individuals due to forceful muscle contraction. Yet, an "isolated trochanteric fracture" may not be regarded as a true hip fracture because it is not cross-sectional.
Diagnosis is based on symptom and confirmed with X-rays. In children an MRI may be required.
X-ray is seldom helpful, but a CT scan and an MRI study may help in diagnosis.
Bone scans are positive early on. Dual energy X-ray absorptiometry is also helpful to rule out comorbid osteoporosis.
Imaging diagnosis conventionally begins with plain film radiography. Generally, AP radiographs of the shoulder with the arm in internal rotation offer the best yield while axillary views and AP radiographs with external rotation tend to obscure the defect. However, pain and tenderness in the injured joint make appropriate positioning difficult and in a recent study of plain film x-ray for Hill–Sachs lesions, the sensitivity was only about 20%. i.e. the finding was not visible on plain film x-ray about 80% of the time.
By contrast, studies have shown the value of ultrasonography in diagnosing Hill–Sachs lesions. In a population with recurrent dislocation using findings at surgery as the gold standard, a sensitivity of 96% was demonstrated. In a second study of patients with continuing shoulder instability after trauma, and using double contrast CT as a gold standard, a sensitivity of over 95% was demonstrated for ultrasound. It should be borne in mind that in both those studies, patients were having continuing problems after initial injury, and therefore the presence of a Hill–Sachs lesion was more likely. Nevertheless, ultrasonography, which is noninvasive and free from radiation, offers important advantages.
MRI has also been shown to be highly reliable for the diagnosis of Hill-Sachs (and Bankart) lesions. One study used challenging methodology. First of all, it applied to those patients with a single, or first time, dislocation. Such lesions were likely to be smaller and therefore more difficult to detect. Second, two radiologists, who were blinded to the surgical outcome, reviewed the MRI findings, while two orthopedic surgeons, who were blinded to the MRI findings, reviewed videotapes of the arthroscopic procedures. Coefficiency of agreement was then calculated for the MRI and arthroscopic findings and there was total agreement ( kappa = 1.0) for Hill-Sachs and Bankart lesions.
Diagnosis is confirmed by x-ray imaging. Displaced fractures are readily apparent. A non-displaced fracture can be difficult to identify and a fracture line may not be visible on the X-rays. However, the presence of a joint effusion is highly suggestive of a non-displaced fracture. Bleeding from the fracture expands the joint capsule and is visualized on the lateral view as a darker area anteriorly and posteriorly, and is known as the sail sign. Depending on the child's age, parts of the bone will still be developing and if not yet calcified, will not show up on the X-rays. At times, X-rays of the opposite elbow may be obtained for comparison. There are landmarks on the X-rays that can be used to assess displacement, including the "anterior humeral line", which is a line drawn down along the front of the humerus on the lateral view and it should pass through the middle third of the capitulum of the humerus.
The decisions involved in the repair of the Hill–Sachs lesion are complex. First, it is not repaired simply because of its existence, but because of its association with continuing symptoms and instability. This may be of greatest importance in the under-25-year-old and in the athlete involved in throwing activities. The Hill-Sachs role in continuing symptoms, in turn, may be related to its size and large lesions, particularly if involving greater than 20% of the articular surface, may impinge on the glenoid fossa (engage), promoting further episodes of instability or even dislocation. Also, it is a fracture, and associated bony lesions or fractures may coexist in the glenoid, such as the so-called bony Bankart lesion. Consequently, its operative treatment may include some form of bony augmentation, such as the Latarjet or similar procedure. Finally, there is no guarantee that associated non-bony lesions, such as a Bankart lesion, SLAP tear, or biceps tendon injury, may not be present and require intervention.
In all injuries to the tibial plateau radiographs (commonly called x-rays) are imperative. Computed tomography scans are not always necessary but are sometimes critical for evaluating degree of fracture and determining a treatment plan that would not be possible with plain radiographs. Magnetic Resonance images are the diagnositic modality of choice when meniscal, ligamentous and soft tissue injuries are suspected. CT angiography should be considered if there is alteration of the distal pulses or concern about arterial injury.
Segond and reverse Segond fractures are characterized by a small avulsion, or "chip", fragment of characteristic size that is best seen on plain radiography in the anterior-posterior plane. The chip of bone may be very difficult to see on the plain x-ray exam, and may be better seen on computed tomography. MRI may be useful for visualization of the associated bone marrow edema of the underlying tibial plateau on fat- saturated T2W and STIR images, as well as the associated findings of ligamentous and/or meniscal injury.
Diagnosis by a doctor’s examination is the most common, often confirmed by x-rays. X-ray is used to display the fracture and the angulations of the fracture. A CT scan may be done in very rare cases to provide a more detailed picture.
Definitive diagnosis of humerus fractures is typically made through radiographic imaging. For proximal fractures, X-rays can be taken from a scapular anteroposterior (AP) view, which takes an image of the front of the shoulder region from an angle, a scapular Y view, which takes an image of the back of the shoulder region from an angle, and an axillar lateral view, which has the patient lie on his or her back, lift the bottom half of the arm up to the side, and have an image taken of the axilla region underneath the shoulder. Fractures of the humerus shaft are usually correctly identified with radiographic images taken from the AP and lateral viewpoints. Damage to the radial nerve from a shaft fracture can be identified by an inability to bend the hand backwards or by decreased sensation in the back of the hand. Images of the distal region are often of poor quality due to the patient being unable to extend the elbow because of pain. If a severe distal fracture is supected, then a computed tomography (CT) scan can provide greater detail of the fracture. Nondisplaced distal fractures may not be directly visible; they may only be visible due to fat being displaced because of internal bleeding in the elbow.
"Baumann's angle", also known as the humeral-capitellar angle, is measured on an AP radiograph of the elbow between the long axis of the humerus and the growth plate of the lateral condyle.
Reported normal values for Baumann's angle range between 9 and 26° An angle of more than 10° is generally regarded as acceptable. When reducing paediatric supracondylar humerus fractures, a deviation of more than 5° from the contralateral side should not be accepted.
Alteration of Baumann angle: Baumann's angle is created by drawing a line parallel to the longitudinal axis of the humeral shaft and a line along the lateral condylar physis as viewed on the AP image normal is 70-75 degrees, but best judge is a comparison of the contralateral side deviation of more than 5 degrees indicates coronal plane deformity and should not be accepted.
Fractures of the humerus are classified based on the location of the fracture and then by the type of fracture. There are three locations that humerus fractures occur: at the proximal location, which is the top of the humerus near the shoulder, in the middle, which is at the shaft of the humerus, and the distal location, which is the bottom of the humerus near the elbow. Proximal fractures are classified into one of four types of fractures based on the displacement of the greater tubercle, the lesser tubercle, the surgical neck, and the anatomical neck, which are the four parts of the proximal humerus, with fracture displacement being defined as at least one centimeter of separation or an angulation greater than 45 degrees. One-part fractures involve no displacement of any parts of the humerus, two-part fractures have one part displaced relative to the other three; three-part fractures have two displaced fragments, and four-part fractures have all fragments displaced from each other. Fractures of the humerus shaft are subdivided into transverse fractures, spiral fractures, "butterfly" fractures, which are a combination of transverse and spiral fractures, and pathological fractures, which are fractures caused by medical conditions. Distal fractures are split between supracondylar fractures, which are transverse fractures above the two condyles at the bottom of the humerus, and intercondylar fractures, which involve a T- or Y-shaped fracture that splits the condyles.
There are several classification schemes for ankle fractures:
- The Lauge-Hansen classification categorises fractures based on the mechanism of the injury as it relates to the position of the foot and the deforming force (most common type is supination-external rotation)
- The Danis-Weber classification categorises ankle fractures by the level of the fracture of the distal fibula (type A = below the syndesmotic ligament, type B = at its level, type C = above the ligament), with use in assessing injury to the syndesmosis and the interosseous membrane
- The Herscovici classification categorises medial malleolus fractures of the distal tibia based on level.
- The Ruedi-Allgower classification categorizes pilon fractures of the distal tibia.
Because of the high rate of associated ligamentous and meniscal injury, the presence of a Segond or reverse Segond fracture requires that these other pathologies must be specifically ruled out. Increasingly, reconstruction of the ACL is combined with reconstruction of the ALL when this associated pathology is present. It is often associated with an increased 'pivot shift' on physical exam.
When a child experiences a fracture, he or she will have pain and will not be able to easily move the fractured area. A doctor or emergency care should be contacted immediately. In some cases even though the child will not have pain and will still be able to move, medical help must be sought out immediately. To decrease the pain, bleeding, and movement a physician will put a splint on the fractured area. Treatment for a fracture follows a simple rule: the bones have to be aligned correctly and prevented from moving out of place until the bones are healed. The specific treatment applied depends on how severe the fracture is, if it’s an open or closed fracture, and the specific bone involved in the fracture (a hip fracture is treated differently from a forearm fracture for example)
Different treatments for different fractures:
The general treatments for common fractures are as follows:
Treatment may be with or without surgery, depending on the type of fracture.
A bone fracture may be diagnosed based on the history given and the physical examination performed. Radiographic imaging often is performed to confirm the diagnosis. Under certain circumstances, radiographic examination of the nearby joints is indicated in order to exclude dislocations and fracture-dislocations. In situations where projectional radiography alone is insufficient, Computed Tomography (CT) or Magnetic Resonance Imaging (MRI) may be indicated.
Treatment is aimed at achieving a stable, aligned, mobile and painless joint and to minimize the risk of post-traumatic osteoarthritis. To achieve this operative or non-operative treatment plans are considered by physicians based on criteria such as patient characteristics, severity, risk of complications, fracture depression and displacement, degree of injury to ligaments and menisci, vascular and neurological compromise.
For early management, traction should be performed early in ward. It can either be Skin Traction or Skeletal Traction. Depends on the body weight of patient and stability of the joint. Schantz pin insertion over the Calcaneum should be done from Medial to lateral side.
Later when condition is stable. Definitive plan would be Buttress Plating and Lag Screw fixation.
Management depends on the severity of the fracture. An undisplaced fracture may be treated with a cast alone. The cast is applied with the distal fragment in palmar flexion and ulnar deviation. A fracture with mild angulation and displacement may require closed reduction. There is some evidence that immobilization with the wrist in dorsiflexion as opposed to palmarflexion results in less redisplacement and better functional status. Significant angulation and deformity may require an open reduction and internal fixation or external fixation. The volar forearm splint is best for temporary immobilization of forearm, wrist and hand fractures, including Colles fracture.
There are several established instability criteria:
dorsal tilt >20°,
comminuted fracture,
abruption of the ulnar styloid process,
intraarticular displacement >1mm,
loss of radial height >2mm.
A higher amount of instability criteria increases the likelihood of operative treatment.
Treatment modalities differ in the elderly.
Repeat Xrays are recommended at one, two, and six weeks to verify proper healing.
Computed tomography is the most sensitive and specific of the imaging techniques. The facial bones can be visualized as slices through the skeletal in either the axial, coronal or sagittal planes. Images can be reconstructed into a 3-dimensional view, to give a better sense of the displacement of various fragments. 3D reconstruction, however, can mask smaller fractures owing to volume averaging, scatter artifact and surrounding structures simply blocking the view of underlying areas.
Research has shown that panoramic radiography is similar to computed tomography in its diagnostic accuracy for mandible fractures and both are more accurate than plain film radiograph. The indications to use CT for mandible fracture vary by region, but it does not seem to add to diagnosis or treatment planning except for comminuted or avulsive type fractures, although, there is better clinician agreement on the location and absence of fractures with CT compared to panoramic radiography.
On X-rays, there can be a fracture of the medial malleolus, the lateral malleolus, or of the anterior/posterior margin of the distal tibia. The posterior margin (known as the posterior malleolus) is much more frequently injured than the anterior aspect of the distal tibia. If both the lateral and medial malleoli are broken, this is called a bimalleolar fracture (some of them are called Pott's fractures). If the posterior malleolus is also fractured, this is called a trimalleolar fracture.