Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Management consists of vigilant observation over days to detect progression. The subgaleal space is capable of holding up to 50% of a newborn baby's blood and can therefore result in acute shock and death. Fluid bolus may be required if blood loss is significant and patient becomes tachycardic. Transfusion and phototherapy may be necessary. Investigation for coagulopathy may be indicated.
No laboratory studies usually are necessary, though serum bilurubin level can be used. Vitamin C deficiency has been reported to possibly be associated with development of cephalohematomas. Skull x-ray or CT scanning is used if neurological symptoms appear. Usual management is mainly observation. Phototherapy may be necessary if blood accumulation is significant leading to jaundice. Rarely anaemia can develop needing blood transfusion. Do not aspirate to remove accumulated blood because of the risk of infection and abscess formation. The presence of a bleeding disorder should be considered but is rare. Skull radiography or CT scanning is also used if concomitant depressed skull fracture is a possibility. It may take weeks and months to resolve and disappear completely.
It may cause seizures but cephalohematoma and caput will not cause seizure
It is important that a person receive medical assessment, including a complete neurological examination, after any head trauma. A CT scan or MRI scan will usually detect significant subdural hematomas.
Subdural hematomas occur most often around the tops and sides of the frontal and parietal lobes. They also occur in the posterior cranial fossa, and near the falx cerebri and tentorium cerebelli. Unlike epidural hematomas, which cannot expand past the sutures of the skull, subdural hematomas can expand along the inside of the skull, creating a concave shape that follows the curve of the brain, stopping only at the dural reflections like the tentorium cerebelli and falx cerebri.
On a CT scan, subdural hematomas are classically crescent-shaped, with a concave surface away from the skull. However, they can have a convex appearance, especially in the early stage of bleeding. This may cause difficulty in distinguishing between subdural and epidural hemorrhages. A more reliable indicator of subdural hemorrhage is its involvement of a larger portion of the cerebral hemisphere since it can cross suture lines, unlike an epidural hemorrhage. Subdural blood can also be seen as a layering density along the tentorium cerebelli. This can be a chronic, stable process, since the feeding system is low-pressure. In such cases, subtle signs of bleeding such as effacement of sulci or medial displacement of the junction between gray matter and white matter may be apparent. A chronic bleed can be the same density as brain tissue (called isodense to brain), meaning that it will show up on CT scan as the same shade as brain tissue, potentially obscuring the finding.
Treatment of a subdural hematoma depends on its size and rate of growth. Some small subdural hematomas can be managed by careful monitoring until the body heals itself. Other small subdural hematomas can be managed by inserting a temporary small catheter through a hole drilled through the skull and sucking out the hematoma; this procedure can be done at the bedside. Large or symptomatic hematomas require a craniotomy, the surgical opening of the skull. A surgeon then opens the dura, removes the blood clot with suction or irrigation, and identifies and controls sites of bleeding. Postoperative complications include increased intracranial pressure, brain edema, new or recurrent bleeding, infection, and seizure. The injured vessels must be repaired.
Depending on the size and deterioration, age of the patient, and anaesthetic risk posed, subdural hematomas occasionally require craniotomy for evacuation; most frequently, simple burr holes for drainage; often conservative treatment; and rarely, palliative treatment in patients of extreme age or with no chance of recovery.
In those with a chronic subdural hematoma, but without a history of seizures, the evidence is unclear if using anticonvulsants is harmful or beneficial.
Some hematomas are visible under the surface of the skin (commonly called bruises) or possibly felt as masses/lumps. Lumps may be caused by the limitation of the blood to a sac, subcutaneous or intramuscular tissue space isolated by fascial planes. This is a key anatomical feature that helps prevent injuries from causing massive blood loss. In most cases the hematoma such as a sac of blood eventually dissolves; however, in some cases they may continue to grow such as due to blood seepage or show no change. If the sac of blood does not disappear, then it may need to be surgically cleaned out/repaired.
The slow process of reabsorption of hematomas can allow the broken down blood cells and hemoglobin pigment to move in the connective tissue. For example, a patient who injures the base of his thumb might cause a hematoma, which will slowly move all through the finger within a week. Gravity is the main determinant of this process.
Hematomas on articulations can reduce mobility of a member and present roughly the same symptoms as a fracture.
In most cases, movement and exercise of the affected muscle is the best way to introduce the collection back into the blood stream.
A mis-diagnosis of a hematoma in the vertebra can sometimes occur; this is correctly called a hemangioma (buildup of cells) or a benign tumor.
A hematoma (US spelling) or haematoma (UK spelling) is a localized collection of blood outside the blood vessels, due to either disease or trauma including injury or surgery and may involve blood continuing to seep from broken capillaries. A hematoma is initially in liquid form spread among the tissues including in sacs between tissues where it may coagulate and solidify before blood is reabsorbed into blood vessels. An ecchymosis is a hematoma of the skin larger than 10mm.
They may occur among/within many areas such as skin and other organs, connective tissues, bone, joints and muscle.
A collection of blood (or even a hemorrhage) may be aggravated by anticoagulant medication (blood thinner). Blood seepage and collection of blood may occur if heparin is given via an intramuscular route; to avoid this, heparin must be given intravenously or subcutaneously.
It is not to be confused with hemangioma, which is an abnormal buildup/growth of blood vessels in the skin or internal organs.
If severe the child may develop jaundice, anemia or hypotension. In some cases it may be an indication of a linear skull fracture or be at risk of an infection leading to osteomyelitis or meningitis.
The swelling of a cephalohematoma takes weeks to resolve as the blood clot is slowly absorbed from the periphery towards the centre. In time the swelling hardens (calcification) leaving a relatively softer centre so that it appears as a 'depressed fracture'.
Cephalohematoma should be distinguished from another scalp bleeding called subgaleal hemorrhage (also called subaponeurotic hemorrhage), which is blood between the scalp and skull bone (above the periosteum) and is more extensive. It is more prone to complications, especially anemia and bruising.
To treat a septal haematoma it is incised & drained to prevent avascular necrosis of the septal hyaline cartilage which depends on diffusion of nutrients from its attached nasal mucosa. Small hematomas can be aspirated with a wide-bore needle. Large hematomas are drained by an incision parallel to nasal floor. Systemic antibiotics are given after the incision and drainage to prevent local infection.
Tissue biopsy is the gold standard. Macroscopically this reveals pale muscle tissue. Microscopically infarcted patches of myocytes. Necrotic muscle fibers are swollen and eosinophilic and lack striations and nuclei. Small-vessel walls are thickened and hyalinized, with luminal narrowing or complete occlusion. Biopsy cultures for bacteria, fungi, acid-fast bacilli and stains are negative in simple myonecrosis.
Creatine kinase may be normal or increased probably depending upon the stage of the condition when sampling is undertaken. ESR is elevated. Planar X-ray reveals soft tissue swelling and may potentially show gas within necrotic muscle, Bone scan may show non specific uptake later in the course. CT shows muscle oedema with preserved tissue planes (non-contrast enhancing). MRI is the exam of choice and shows increased signal on T2 weighted images within areas of muscle oedema. Contrast enhancement is helpful but must be weighed against the risk of Nephrogenic Systemic Fibrosis as many diabetics have underlying renal insufficiency. Arteriography reveals large and medium vessel arteriosclerosis occasionally with dye within the area of tissue infarction . Electromyography shows non specific focal changes.
Raccoon eye/eyes (also known in the United Kingdom and Ireland as panda eyes) or periorbital ecchymosis is a sign of basal skull fracture or subgaleal hematoma, a craniotomy that ruptured the meninges, or (rarely) certain cancers. Bilateral hemorrhage occurs when damage at the time of a facial fracture tears the meninges and causes the venous sinuses to bleed into the arachnoid villi and the cranial sinuses. In layman's terms, blood from skull fracture seeps into the soft tissue around the eyes. Raccoon eyes may be accompanied by Battle's sign, an ecchymosis behind the ear. These signs may be the only sign of a skull fracture, as it may not show on an X-ray. They may not appear until up 2–3 days after the injury. It is recommended that the patient not blow their nose, cough vigorously, or strain to prevent further tearing of the meninges.
Raccoon eyes may be bilateral or unilateral. If bilateral, it is highly suggestive of basilar skull fracture, with a positive predictive value of 85%. They are most often associated with fractures of the anterior cranial fossa.
Raccoon eyes may also be a sign of disseminated neuroblastoma or of amyloidosis (multiple myeloma).
Depending on cause, raccoon eyes always require urgent consultation and management, that is surgical (facial fracture or post-craniotomy) or medical (neuroblastoma or amyloidosis).
While any number of injuries may occur during the birthing process. A number of specific conditions are well described. Brachial plexus palsy occurs in 0.4 to 5.1 infants per 1000 live birth. Head trauma and brain damage during delivery can lead to a number of conditions include: caput succedaneum, cephalohematoma, subgaleal hemorrhage, subdural hemorrhage, subarachnoid hemorrhage, epidural hemorrhage, and intraventricular hemorrhage.
The most common fracture during delivery is that of the clavicle (0.5%).
Sequelae can occur in both the mother and the infant after a traumatic birth.
Birth trauma is uncommon in the Western world in relation to rates in the third world. In the West injury occurs in 1.1% of C-sections.
Nasal septal hematoma is a condition affecting the nasal septum. It can be associated with trauma.
Because the septal cartilage has no blood supply of its own and receives all of its nutrients and oxygen from the perichondrium, an untreated septal hematoma may lead to destruction of the septum. Immediate drainage is necessary. Failure to recognise septal hematomas, or treat in a timely fashion, can cause a saddle nose deformity.
Treatment includes supportive care with analgesics and anti-inflammatory agents. Exercise should be limited as it increases pain and extends the area of infarction. Symptoms usually resolve in weeks to months, but fifty percent of sufferers will experience relapse in either leg.
Diagnosis is suspected based on lesion circumstances and clinical evidence, most prominently a neurological examination, for example checking whether the pupils constrict normally in response to light and assigning a Glasgow Coma Score. Neuroimaging helps in determining the diagnosis and prognosis and in deciding what treatments to give.
The preferred radiologic test in the emergency setting is computed tomography (CT): it is quick, accurate, and widely available. Follow-up CT scans may be performed later to determine whether the injury has progressed.
Magnetic resonance imaging (MRI) can show more detail than CT, and can add information about expected outcome in the long term. It is more useful than CT for detecting injury characteristics such as diffuse axonal injury in the longer term. However, MRI is not used in the emergency setting for reasons including its relative inefficacy in detecting bleeds and fractures, its lengthy acquisition of images, the inaccessibility of the patient in the machine, and its incompatibility with metal items used in emergency care. A variant of MRI since 2012 is High definition fiber tracking (HDFT).
Other techniques may be used to confirm a particular diagnosis. X-rays are still used for head trauma, but evidence suggests they are not useful; head injuries are either so mild that they do not need imaging or severe enough to merit the more accurate CT. Angiography may be used to detect blood vessel pathology when risk factors such as penetrating head trauma are involved. Functional imaging can measure cerebral blood flow or metabolism, inferring neuronal activity in specific regions and potentially helping to predict outcome. Electroencephalography and transcranial doppler may also be used. The most sensitive physical measure to date is the quantitative EEG, which has documented an 80% to 100% ability in discriminating between normal and traumatic brain-injured subjects.
Neuropsychological assessment can be performed to evaluate the long-term cognitive sequelae and to aid in the planning of the rehabilitation. Instruments range from short measures of general mental functioning to complete batteries formed of different domain-specific tests.
Since the cause of FAD has not been genetically pinpointed, the only way to diagnose FAD is through the examination of phenotypic variations in the aorta. Usually echocardiography is used to take measurements of the aortic root as well as transesophageal echocardiography. Biomarkers lend a quick way to diagnose dissection when time is of the essence. These have the ability to relay the levels of smooth muscle mysosin heavy chain protein present, which is released from damaged aortic tissue.
There are two types of FAD; groups A and B. Normally if any area of the ascending aorta is involved in the dissection this is considered group A. If the dissection occurs within the descending aorta this is classified in group B. These two groups can than be broken down into three classes of FAD: Type 1, Type 2 and Type 3. Group A consists of Types 1 and 2, whereas Group B consists only of Type 3. Type 1 encompasses dissection in the distal ascending aorta closest to the heart, not including the aortic arch. Type 2 refers to dissection of the ascending aorta, closer to and including the aortic arch. Type 3 refers to the descending thoracic and abdominal aorta.
Group A dissections are the more serious of the two due to the location of the dissection in the ascending aorta, which leads to a higher risk of congestive heart failure and pericardium and/or aortic valve rupture. Individuals also tend to be predisposed to type A if they do have Marfans or Elhers-Danlos syndromes. These contribute to a higher fatality rate in group A dissection if immediate surgery is not performed. The most common corrective surgeries are actual aortic valve replacement and coronary artery bypass. The five year survival rate after surgery is a successful 70.4% due to vigilant monthly physical exams and chest x-rays to monitor progress. Group B dissections typically have a higher surgery mortality rate and are therefore not good candidates. Instead medical management is the common response to treating and keeping dissections of the descending aorta under control.
On CT scans, bone cysts that have a radiodensity of 20 Hounsfield units (HU) or less, and are osteolytic, tend to be aneurysmal bone cysts.
In contrast, intraosseous lipomas have a lower radiodensity of -40 to -60 HU.
Simple (Unicameral) Bone Cyst
Some unicameral bone cysts may spontaneously resolve without medical intervention. Specific treatments are determined based on size of the cyst, strength of the bone, medical history, extent of the disease, activity level, symptoms an individual is experiencing, and tolerance for specific medications, procedures, or therapies. The types of methods used to treat this type of cyst are curettage and bone grafting, aspiration, steroid injections, and bone marrow injections. Watchful waiting and activity modifications are the most common nonsurgical treatments that will help resolve and help prevent unicameral bone cysts from occurring and reoccurring.
Aneurysmal Bone Cyst
The aneurysmal bone cyst can be treated with a variety of different methods. These methods include open curettage and bone grafting with or without adjuvant therapy, cryotheraphy, sclerotherapy, ethibloc injections, radionuclide ablation, and selective arterial embolization. En-block resection and reconstruction with strut grafting are the most common treatments and procedures that prevent recurrences of this type of cyst.
Traumatic Bone Cyst
The traumatic bone cyst treatment consists of surgical exploration, curettage of the osseous socket and bony walls, subsequent filling with blood, and intralesional steroid injections. Young athletes can reduce their risk of traumatic bone cyst by wearing protective mouth wear or protective head gear.
The uterus should be evacuated and contractions should be stimulated using intravenous oxytocin; hysterectomy (the removal of the uterus) may be needed in some cases.
Currently, there is controversy over whether or not inheritance truly plays a role in FAD, and if so which gene it acts upon. FAD does not come from strictly one predisposing factor, such as hypertension. It is suggested that the combination of environmental factors along with genetics may contribute to causing FAD. Before newer and more effective cures and therapies can be developed, first the specific gene mutation must be identified. Until such a gene is determined, scientists say patient education, and physician awareness is vital. Currently scientists have found animal models to be beneficial in understanding the pathology behind FAD. In the future there is hope to develop drugs that will better support and strengthen the aortic wall. Endovascular methods of treatment are becoming increasingly popular, and scientists hope to use this technique in both acute and chronic cases.
The fetus may be compromised if there is prolonged delivery because of the non-contractile uterus; severe bleeding may cause hypovolemic shock in the mother.
There are several tests done to diagnose hemifacial spasm. Diagnosing a case of hemifacial spasm begins with a complete neurological exam, including an Electromyography (EMG – a test that measures and records electrical activity generated in muscle at rest and in response to muscle contraction), Magnetic resonance imaging (MRI – a test that uses magnetic waves to make pictures of structures inside the head), Computed tomography (CT scan – a type of x-ray that uses a computer to make pictures of structures inside the head), and Angiography (an x-ray exam of the blood vessels when they are filled with a contrast material).
Studies have shown that the most effective method of hemifacial spasm screening is MRI. In one study only 25% of the CT scans showed the abnormality in hemifacial spasm patients, whilst more than half of the MRI imaging demonstrated a vascular anomaly. MRI imaging should be the initial screening procedure in the assessment of patients with hemifacial spasm.
Prognosis worsens with the severity of injury. Most TBIs are mild and do not cause permanent or long-term disability; however, all severity levels of TBI have the potential to cause significant, long-lasting disability. Permanent disability is thought to occur in 10% of mild injuries, 66% of moderate injuries, and 100% of severe injuries. Most mild TBI is completely resolved within three weeks, and almost all people with mild TBI are able to live independently and return to the jobs they had before the injury, although a portion have mild cognitive and social impairments. Over 90% of people with moderate TBI are able to live independently, although a portion require assistance in areas such as physical abilities, employment, and financial managing. Most people with severe closed head injury either die or recover enough to live independently; middle ground is less common. Coma, as it is closely related to severity, is a strong predictor of poor outcome.
Prognosis differs depending on the severity and location of the lesion, and access to immediate, specialised acute management. Subarachnoid hemorrhage approximately doubles mortality. Subdural hematoma is associated with worse outcome and increased mortality, while people with epidural hematoma are expected to have a good outcome if they receive surgery quickly. Diffuse axonal injury may be associated with coma when severe, and poor outcome. Following the acute stage, prognosis is strongly influenced by the patient's involvement in activity that promote recovery, which for most patients requires access to a specialised, intensive rehabilitation service. The Functional Independence Measure is a way to track progress and degree of independence throughout rehabilitation.
Medical complications are associated with a bad prognosis. Examples are hypotension (low blood pressure), hypoxia (low blood oxygen saturation), lower cerebral perfusion pressures and longer times spent with high intracranial pressures. Patient characteristics also influence prognosis. Factors thought to worsen it include abuse of substances such as illicit drugs and alcohol and age over sixty or under two years (in children, younger age at time of injury may be associated with a slower recovery of some abilities). Other influences that may affect recovery include pre-injury intellectual ability, coping strategies, personality traits, family environment, social support systems and financial circumstances.
Life satisfaction has been known to decrease for individuals with TBI immediately following the trauma, but evidence has shown that life roles, age, and depressive symptoms influence the trajectory of life satisfaction as time passes.
A diagnosis can be made by an evaluation of medical history and clinical observation. The Beighton criteria are widely used to assess the degree of joint hypermobility. DNA and biochemical studies can help identify affected individuals. Diagnostic tests include collagen gene mutation testing, collagen typing via skin biopsy, echocardiogram, and lysyl hydroxylase or oxidase activity. However, these tests are not able to confirm all cases, especially in instances of an unmapped mutation, so clinical evaluation by a geneticist remains essential. If there are multiple affected individuals in a family, it may be possible to perform prenatal diagnosis using a DNA information technique known as a linkage study. There is poor knowledge about EDS among practitioners.