Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In terms of diagnosis of HNPP measuring nerve conduction velocity may give an indication of the presence of the disease.Other methods via which to ascertain the diagnosis of hereditary neuropathy with liability to pressure palsy are:
- Family history
- Genetic test
- Physical exam(lack of ankle reflex)
A diagnosis of Friedreich's ataxia requires a careful clinical examination, which includes a medical history and a thorough physical exam, in particular looking for balance difficulty, loss of proprioception, absence of reflexes, and signs of neurological problems. Genetic testing now provides a conclusive diagnosis. Other tests that may aid in the diagnosis or management of the disorder include:
- Electromyogram (EMG), which measures the electrical activity of muscle cells,
nerve conduction studies, which measure the speed with which nerves transmit impulses
- Electrocardiogram (ECG), which gives a graphic presentation of the electrical activity or beat pattern of the heart
- Echocardiogram, which records the position and motion of the heart muscle
- Blood tests to check for elevated glucose levels and vitamin E levels
- Magnetic resonance imaging (MRI) or computed tomography (CT) scans, tests which provide brain and spinal cord images that are useful for ruling out other neurological conditions
While the clinical picture may point towards the diagnosis of the Roussy–Lévy syndrome, the condition can only be confirmed with absolute certainty by carrying out genetic testing in order to identify the underlying mutations.
There is no known prevention of spinocerebellar ataxia. Those who are believed to be at risk can have genetic sequencing of known SCA loci performed to confirm inheritance of the disorder.
Diffuse, symmetric white matter abnormalities were demonstrated by magnetic resonance imaging (MRI) suggesting that Behr syndrome may represent a disorder of white matter associated with an unknown biochemical abnormality.
Diagnosis is suspected clinically and family history, neuroimaging and genetic study helps to confirm Behr Syndrome.
In diagnosing autosomal dominant cerebellar ataxia the individuals clinical history or their past health examinations, a current physical examination to check for any physical abnormalities, and a genetic screening of the patients genes and the genealogy of the family are done. The large category of cerebellar ataxia is caused by a deterioration of neurons in the cerebellum, therefore magnetic resonance imaging (MRI) is used to detect any structural abnormality such as lesions which are the primary cause of the ataxia. Computed tomography (CT) scans can also be used to view neuronal deterioration, but the MRI provides a more accurate and detailed picture.
A skin biopsy for the measurement of epidermal nerve fiber density is an increasingly common technique for the diagnosis of small fiber peripheral neuropathy. Physicians can biopsy the skin with a 3-mm circular punch tool and immediately fix the specimen in 2% paraformaldehyde lysine-periodate or Zamboni's fixative. Specimens are sent to a specialized laboratory for processing and analysis where the small nerve fibers are quantified by a neuropathologist to obtain a diagnostic result.
This skin punch biopsy measurement technique is called intraepidermal nerve fiber density (IENFD). The following table describes the IENFD values in males and females of a 3 mm biopsy 10-cm above the lateral malleolus (above ankle outer side of leg). Any value measured below the 0.05 Quantile IENFD values per age span, is considered a reliable positive diagnosis for Small Fiber Peripheral Neuropathy.
MJD can be diagnosed by recognizing the symptoms of the disease and by taking a family history. Physicians ask patients questions about the kind of symptoms relatives with the disease had, the progression and harshness of symptoms, and the ages of onset in family members.
Presymptomatic diagnosis of MJD can be made with a genetic test. The direct detection of the genetic mutation responsible for MJD has been available since 1995. Genetic testing looks at the number of CAG repeats within the coding region of the MJD/ATXN3 gene on chromosome 14. The test will show positive for MJD if this region contains 61-87 repeats, as opposed to the 12-44 repeats found in healthy individuals. A limitation to this test is that if the number of CAG repeats in an individual being tested falls between the healthy and pathogenic ranges (45-60 repeats), then the test cannot predict whether an individual will have MJD symptoms.
There is no current treatment, however management of hereditary neuropathy with liability to pressure palsy can be done via:
- Occupational therapist
- Ankle/foot orthosis
- Wrist splint (medicine)
- Avoid repetitive movements
Hereditary spastic paraplegias can be classified based on the symptoms; mode of inheritance; the patient’s age at onset; the affected genes; and biochemical pathways involved.
There is no pharmacological treatment for Roussy–Lévy syndrome.
Treatment options focus on palliative care and corrective therapy. Patients tend to benefit greatly from physical therapy (especially water therapy as it does not place excessive pressure on the muscles), while moderate activity is often recommended to maintain movement, flexibility, muscle strength and endurance.
Patients with foot deformities may benefit from corrective surgery, which, however, is usually a last resort. Most such surgeries include straightening and pinning the toes, lowering the arch, and sometimes, fusing the ankle joint to provide stability. Recovering from these surgeries is oftentimes long and difficult. Proper foot care including custom-made shoes and leg braces may minimize discomfort and increase function.
While no medicines are reported to treat the disorder, patients are advised to avoid certain medications as they may aggravate the symptoms.
RG2833, a histone deacetylase inhibitor developed by Repligen, was acquired by BioMarin Pharmaceutical in January 2014. The first human trials with this compound began in 2012.
Horizon Pharma's development plan of interferon gamma-1B for treatment of FA was given fast track designation by the Food and Drug Administration in 2015.
In its trials released in December 2016, however, the results showed no improvements over placebo in patients.
There is currently no cure for SCA 6; however, there are supportive treatments that may be useful in managing symptoms.
The clinical diagnosis is backed up by investigative findings. Citrulline level in blood is decreased. Mitochondrial studies or NARP mtDNA evaluation plays a role in genetic diagnosis which can also be done prenatally.
The diagnosis of small fiber neuropathy often requires ancillary testing. Nerve conduction studies and electromyography are commonly used to evaluate large myelinated sensory and motor nerve fibers, but are ineffective in diagnosing small fiber neuropathies.
Quantitative sensory testing (QST) assesses small fiber function by measuring temperature and vibratory sensation. Abnormal QST results can be attributed to dysfunction in the central nervous system. Furthermore, QST is limited by a patient’s subjective experience of pain sensation. Quantitative sudomotor axon reflex testing (QSART) measures sweating response at local body sites to evaluate the small nerve fibers that innervate sweat glands.
In terms of the differential diagnosis for polyneuropathy one must look at the following:
In terms of a cure there is currently none available, however for the disease to manifest itself, it requires mutant gene expression. Manipulating the use of protein homoestasis regulators can be therapuetic agents, or a treatment to try and correct an altered function that makes up the pathology is one current idea put forth by Bushart, et al. There is some evidence that for SCA1 and two other polyQ disorders that the pathology can be reversed after the disease is underway. There is no effective treatments that could alter the progression of this disease, therefore care is given, like occupational and physical therapy for gait dysfunction and speech therapy.
Initial diagnosis of HSPs relies upon family history, the presence or absence of additional signs and the exclusion of other nongenetic causes of spasticity, the latter being particular important in sporadic cases.
Cerebral and spinal MRI is an important procedure performed in order to rule out other frequent neurological conditions, such as multiple sclerosis, but also to detect associated abnormalities such as cerebellar or corpus callosum atrophy as well as white matter abnormalities. Differential diagnosis of HSP should also exclude spastic diplegia which presents with nearly identical day-to-day effects and even is treatable with similar medicines such as baclofen and orthopedic surgery; at times, these two conditions may look and feel so similar that the only "perceived" difference may be HSP's hereditary nature versus the explicitly non-hereditary nature of spastic diplegia (however, unlike spastic diplegia and other forms of spastic cerebral palsy, HSP cannot be reliably treated with selective dorsal rhizotomy).
Ultimate confirmation of HSP diagnosis can only be provided by carrying out genetic tests targeted towards known genetic mutations.
A thorough history is essential and should cover family history, diet; drug/toxin exposure social history, including tobacco and alcohol use; and occupational background, with details on whether similar cases exist among coworkers. Treatment of any chronic disease such as pernicious anemia should always be elucidated.
In most cases of nutritional/toxic optic neuropathy, the diagnosis may be obtained via detailed medical history and eye examination. Additionally, supplementary neurological imaging studies, such as MRI or enhanced CT, may be performed if the cause remains unclear.
When the details of the examination and history indicate a familial history of similar ocular or systemic disease, whether or not there is evidence of toxic or nutritional causes for disease, certain genetic tests may be required. Because there are several congenital causes of mitochondrial dysfunction, the patients history, examination, and radiological studies must be examined in order to determine the specific genetic tests required. For example, 90% of cases of Leber’s Hereditary Optic Neuropathy (LHON) are associated with three common mtDNA point mutations (m.3460G>A/MT-ND1, m.11778G>A/MT-ND4, m.14484T>C/MT-ND6) while a wider range of mtDNA mutations (MT-ND1, MT-ND5, MT-ND6; http://www.mitomap.org/) have been associated with overlapping phenotypes of LHON, MELAS, and Leigh syndrome.
There are five sub-types of MJD that are characterized by the age of onset and range of symptoms.
The sub-types illustrate a wide variety of symptoms that patients can experience. However, assigning individuals to a specific sub-type of the disease is of limited clinical significance.
- Type I is distinguished by arrival between the ages of 10 and 30 and represents approximately 13% of individuals. It usually has fast development and severe rigidity and dystonia.
- Type II is the most common sub-type (approximately 57% of individuals with MJD ) and typically begins between 20 and 50 years of age . It has an intermediate progression and causes symptoms that include spasticity, exaggerated reflex responses and spastic gait, ataxia and upper motor neuron signs.
- Type III MJD has a slow progression. Patients typically have an onset between the ages of 40 and 70 and represent approximately 30% of MJD patients. Symptoms include muscle twitching, tingling, cramps, unpleasant sensations such as numbness, pain in the feet, hands and limbs and muscle atrophy. Nearly all patients experience a decline in their vision such as blurred vision, double vision, inability to control eye movements, and loss of capability to distinguish color. Some patients also experience Parkinsonian symptoms.
- Type IV is distinguished by Parkinsonian symptoms that respond particularly well to levodopa treatment.
- Type V appears to resemble Hereditary Spastic Paraplegia; however, more research is needed to conclude the relationship between Type V MJD and hereditary spastic paraplegia.
The diagnosis of polyneuropathies begins with a history and physical examination to ascertain the pattern of the disease process (such as-arms, legs, distal, proximal) if they fluctuate, and what deficits and pain are involved. If pain is a factor, determining where and how long the pain has been present is important, one also needs to know what disorders are present within the family and what diseases the person may have. Although diseases often are suggested by the physical examination and history alone, tests that may be employed include: electrodiagnostic testing, serum protein electrophoresis, nerve conduction studies, urinalysis, serum creatine kinase (CK) and antibody testing (nerve biopsy is sometimes done).
Other tests may be used, especially tests for specific disorders associated with polyneuropathies, quality measures have been developed to diagnose patients with distal symmetrical polyneuropathy (DSP).
There is no cure for spinocerebellar ataxia, which is currently considered to be a progressive and irreversible disease, although not all types cause equally severe disability.
In general, treatments are directed towards alleviating symptoms, not the disease itself. Many patients with hereditary or idiopathic forms of ataxia have other symptoms in addition to ataxia. Medications or other therapies might be appropriate for some of these symptoms, which could include tremor, stiffness, depression, spasticity, and sleep disorders, among others. Both onset of initial symptoms and duration of disease are variable. If the disease is caused by a polyglutamine trinucleotide repeat CAG expansion, a longer expansion may lead to an earlier onset and a more radical progression of clinical symptoms. Typically, a person afflicted with this disease will eventually be unable to perform daily tasks (ADLs). However, rehabilitation therapists can help patients to maximize their ability of self-care and delay deterioration to certain extent. Researchers are exploring multiple avenues for a cure including RNAi and the use of Stem Cells and several other avenues.
On January 18, 2017 BioBlast Pharma announced completion of Phase 2a clinical trials of their medication, Trehalose, in the treatment of SCA3. BioBlast has received FDA Fast Track status and Orphan Drug status for their treatment. The information provided by BioBlast in their research indicates that they hope this treatment may prove efficacious in other SCA treatments that have similar pathology related to PolyA and PolyQ diseases.
In addition, Dr. Beverly Davidson has been working on a methodology using RNAi technology to find a potential cure for over 2 decades. Her research began in the mid-1990s and progressed to work with mouse models about a decade later and most recently has moved to a study with non-human primates. The results from her most recent research "are supportive of clinical application of this gene therapy". Dr. Davidson along with Dr. Pedro Gonzalez-Alegre are currently working to move this technique into a Phase 1 clinical trial.
Finally, another gene transfer technology discovered in 2011 has also been shown by Dr. Davidson to hold great promise and offers yet another avenue to a potential future cure.
Detection of this type of neuropathy has concentrated mostly on detecting presence of antibodies because the antibodies are the main cause for the disease. Anti-MAG antibodies can be readily detected in a patient’s sera using various types of assays, but mainly an ELISA has been shown to be most effective. There are also various biological indicators, such as elevated cerebral spinal fluid proteins and elevated IgM monoclonal levels. These can also be tested either by drawing serum from a patient or by drawing spinal fluid from a spinal tap and testing using an assay or blot.
A detailed family history should be obtained from at least three generations. In particularly a history to determine if there has been any neonatal and childhood deaths: Also a way to determine if any one of the family members exhibit any of the features of the multi-system disease. Specifically if there has been a maternal inheritance, when the disease is transmitted to females only, or if there is a family member who experienced a multi system involvement such as: Brain condition that a family member has been record to have such asseizures, dystonia, ataxia, or stroke like episodes.The eyes with optic atrophy, the skeletal muscle where there has been a history of myalgia, weakness or ptosis. Also in the family history look for neuropathy and dysautonomia, or observe heart conditions such ascardiomyopathy. The patients history might also exhibit a problem in their kidney, such as proximal nephron dysfunction. An endocrine condition, for example diabetes and hypoparathyroidism. The patient might have also had gastrointestinal condition which could have been due to liver disease, episodes of nausea or vomiting. Multiple lipomas in the skin, sideroblastic anemia and pancytopenia in the metabolic system or short stature might all be examples of patients with possible symptoms of MERRF disease.