Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Kyphosis can be graded in severity by the Cobb angle. Also, "sagittal balance" can be measured. The sagittal balance is the horizontal distance between the center of C7 and the superior-posterior border of the endplate of S1 on a lateral radiograph. An offset of more than 2.5 cm anteriorly or posteriorly is considered to be abnormal.
Measurement and diagnosis of lumbar hyperlordosis can be difficult. Obliteration of vertebral end-plate landmarks by interbody fusion may make the traditional measurement of segmental lumbar lordosis more difficult. Because the L4-L5 and L5-S1 levels are most commonly involved in fusion procedures, or arthrodesis, and contribute to normal lumbar lordosis, it is helpful to identify a reproducible and accurate means of measuring segmental lordosis at these levels.
A visible sign of hyperlordosis is an abnormally large arch of the lower back and the person appears to be puffing out his or her stomach and buttocks. Precise diagnosis is done by looking at a complete medical history, physical examination and other tests of the patient. X-rays are used to measure the lumbar curvature, bone scans are conducted in order to rule out possible fractures and infections, magnetic resonance imaging (MRI) is used to eliminate the possibility of spinal cord or nerve abnormalities, and computed tomography scans (CT scans) are used to get a more detailed image of the bones, muscles and organs of the lumbar region.
People who initially present with scoliosis are examined to determine whether the deformity has an underlying cause. During a physical examination, the following are assessed to exclude the possibility of underlying condition more serious than simple scoliosis.
The person's gait is assessed, and there is an exam for signs of other abnormalities (e.g., spina bifida as evidenced by a dimple, hairy patch, lipoma, or hemangioma). A thorough neurological examination is also performed, the skin for "café au lait" spots, indicative of neurofibromatosis, the feet for cavovarus deformity, abdominal reflexes and muscle tone for spasticity.
When a person can cooperate, he or she is asked to bend forward as far as possible. This is known as the Adams Forward Bend Test and is often performed on school students. If a prominence is noted, then scoliosis is a possibility and an X-ray may be done to confirm the diagnosis.
As an alternative, a scoliometer may be used to diagnose the condition.
When scoliosis is suspected, weight-bearing full-spine AP/coronal (front-back view) and lateral/sagittal (side view) X-rays are usually taken to assess the scoliosis curves and the kyphosis and lordosis, as these can also be affected in individuals with scoliosis. Full-length standing spine X-rays are the standard method for evaluating the severity and progression of the scoliosis, and whether it is congenital or idiopathic in nature. In growing individuals, serial radiographs are obtained at three- to 12-month intervals to follow curve progression, and, in some instances, MRI investigation is warranted to look at the spinal cord.
The standard method for assessing the curvature quantitatively is measuring the Cobb angle, which is the angle between two lines, drawn perpendicular to the upper endplate of the uppermost vertebra involved and the lower endplate of the lowest vertebra involved. For people with two curves, Cobb angles are followed for both curves. In some people, lateral-bending X-rays are obtained to assess the flexibility of the curves or the primary and compensatory curves.
Congenital and idiopathic scoliosis that develops before the age of 10 is referred to as early onset scoliosis (EOS). Scoliosis that develops after 10 is referred to as adolescent idiopathic scoliosis.
Genetic testing for AIS, which became available in 2009 and is still under investigation, attempts to gauge the likelihood of curve progression.
The risk of serious complications from spinal fusion surgery for kyphosis is estimated to be 5%, similar to the risks of surgery for scoliosis. Possible complications include inflammation of the soft tissue or deep inflammatory processes, breathing impairments, bleeding, and nerve injuries. According to the latest evidence, the actual rate of complications may be substantially higher. Even among those who do not suffer from serious complications, 5% of patients require reoperation within five years of the procedure, and in general it is not yet clear what one would expect from spine surgery during the long-term. Taking into account that signs and symptoms of spinal deformity cannot be changed by surgical intervention, surgery remains to be a cosmetic indication. Unfortunately, the cosmetic effects of surgery are not necessarily stable.
Diagnosis is typically by medical imaging. The degree of kyphosis can be measured by Cobb's angle and sagittal balance.
Scoliosis is defined as a three-dimensional deviation in the axis of a person's spine In the diagnostic sense, it is defined as a spinal curvature of more than 10 degrees to the right or left as the examiner faces the person, i.e. in the coronal plane. Deformity may also exist to the front or back as the examiner looks at the person from the side, i.e. in the sagittal plane.
Scoliosis has been described as a biomechanical deformity, the progression of which depends on asymmetric forces otherwise known as the Heuter-Volkmann law.
In 1977, Dyck and Doyle reported on the bicycle test, a simple procedure in which the patient is asked to pedal on a stationary bicycle. If the symptoms are caused by peripheral vascular disease, the patient will experience claudication, a sensation of not getting enough blood to the legs; if the symptoms are caused by lumbar stenosis, symptoms will be relieved when the patient is leaning forward while bicycling. Although diagnostic progress has been made with newer technical advances, the bicycle test remains an inexpensive and easy way to distinguish between claudication caused by vascular disease and spinal stenosis.
MRI is the preferred method of diagnosing and evaluating spinal stenosis of all areas of the spine, including cervical, thoracic and lumbar. MRI is useful to diagnose cervical spondylotic myelopathy (degenerative arthritis of the cervical spine with associated damage to the spinal cord). The finding of degeneration of the cervical spinal cord on MRI can be ominous; the condition is called myelomalacia or cord degeneration. It is seen as an increased signal on the MRI. In myelopathy (pathology of the spinal cord) from degenerative changes, the findings are usually permanent and decompressive laminectomy will not reverse the pathology. Surgery can stop the progression of the condition. In cases where the MRI changes are due to Vitamin B-12 deficiency, a brighter prospect for recovery can be expected.
MRI has become the most frequently used study to diagnose spinal stenosis. The MRI uses electromagnetic signals to produce images of the spine. MRIs are helpful because they show more structures, including nerves, muscles, and ligaments, than seen on x-rays or CT scans. MRIs are helpful at showing exactly what is causing spinal nerve compression.
A spinal tap is performed in the low back with dye injected into the spinal fluid. X-Rays are performed followed by a CT scan of the spine to help see narrowing of the spinal canal.
This is a very effective study in cases of lateral recess stenosis. It is also necessary for patients in which MRI is contraindicated, such as those with implanted pacemakers.
A study measured outcome from surgery of 49 cases of scoliosis and kyphoscoliosis. Of this sample, 36 patients were monitored for a period of 8 years.
- 23% - excellent condition
- 29% - good condition
- 34% - satisfactory
- 14% - bad
Bad refers to cases where the surgery failed to address the disease and the patient either had to undergo a revision surgery or continues to suffer from a poor quality of life as before surgery.
It should be noted that typically post-surgery complications range up to 5% involving all major and minor complications when measured within one year of surgery. However, there may be a progressive decline in patient’s condition after a few years.
In another study that evaluated surgical treatment of kyphoscoliosis and scoliosis due to congenital reasons, 91% of surgeries were found to be successful and met their intended objectives for the two-year follow-up period after surgery. The sample consisted of 23 patients of whom 17 were male and 6 were female, with an average age of 27 years, ranging from 13 to 61 years. The most popular type of surgeries for spinal correction includes pedicle subtraction osteotomy (PSO) and posterior vertebral column resection (pVCR).
Another study which focused on elderly patients found that the rate of complications was much higher for a sample population of 72 cases with mean age of 60.7 years. The rate of complications was as high as 22% in the entire sample. The study points that in the case of elderly patients, surgery should only be considered when there is no other option left; the disease is in progression stage, and the quality of life has degraded to an extent where conservative treatments can no longer help with pain.
While there are many surgical approaches for spinal deformity correction including anterior only, posterior only, anterior-posterior, the techniques that are most popular nowadays include the posterior only VCR or pVCR. One of the studies which analyze pVCR technique also noted the benefit of using a technique called NMEP monitoring in assisting the surgeon avoid any neurological complications while performing a spine surgery.
In conclusion, the decision to undergo a corrective spine surgery is a complex one but sometimes becomes necessary when the quality of life has degraded to such an extent that potential benefits outweigh the risks. No surgery is devoid of risks but by carefully assessing factors such as the skills and experience of the surgical team, previous record or history of outcomes, and the techniques that are used for spine surgery, a patient along with his or her doctor can certainly help in achieving a successful outcome.
As studies are repeatedly pointing out, the success rates for spinal surgeries have improved so much so that the risks rates can now be comparable to other types of surgeries. These success rates also tend to be higher at a younger age when compared to the elderly age.
For children younger than eight weeks of age (and possibly in utero), a tethered cord may be observed using ultrasonography. Ultrasonography may still be useful through age 5 in limited circumstances.
MRI imaging appears to be the gold standard for diagnosing a tethered cord.
A tethered cord is often diagnosed as a "low conus." The conus medullaris (or lower termination of the spinal cord) normally terminates at or above the L1-2 disk space (where L1 is the first, or topmost lumbar vertebra). After about 3 months of age, a conus below the L1-2 disk space may indicate a tethered cord and termination below L3-4 is unmistakably tethered. "Cord tethering is often assumed when the conus is below the normal L2-3 level.
TCS, however, is a clinical diagnosis that should be based on "neurological and musculoskeletal signs and symptoms. Imaging features are in general obtained to support rather than make the diagnosis." Clinical evaluation may include a simple rectal examination and may also include invasive or non-invasive urological examination. "Bladder dysfunction occurs in ~40% of patients affected by tethered cord syndrome. ... [I]t may be the earliest sign of the syndrome."
Since lumbar hyperlordosis is usually caused by habitual poor posture, rather than by an inherent physical defect like scoliosis or hyperkyphosis, it can be reversed. This can be accomplished by stretching the lower back, hip-flexors, hamstring muscles, and strengthening abdominal muscles.Dancers should ensure that they don't strain themselves during dance rehearsals and performances. To help with lifts, the concept of isometric contraction, during which the length of muscle remains the same during contraction, is important for stability and posture.
Lumbar hyperlordosis may be treated by strengthening the hip extensors on the back of the thighs, and by stretching the hip flexors on the front of the thighs.
Only the muscles on the front and on the back of the thighs can rotate the pelvis forward or backward while in a standing position because they can discharge the force on the ground through the legs and feet. Abdominal muscles and erector spinae can't discharge force on an anchor point while standing, unless one is holding his hands somewhere, hence their function will be to flex or extend the torso, not the hip.
Back hyper-extensions on a Roman chair or inflatable ball will strengthen all the posterior chain and will treat hyperlordosis. So too will stiff legged deadlifts and supine hip lifts and any other similar movement strengthening the posterior chain "without involving the hip flexors" in the front of the thighs. Abdominal exercises could be avoided altogether if they stimulate too much the psoas and the other hip flexors.
Controversy regarding the degree to which manipulative therapy can help a patient still exists. If therapeutic measures reduce symptoms, but not the measurable degree of lordotic curvature, this could be viewed as a successful outcome of treatment, though based solely on subjective data. The presence of measurable abnormality does not automatically equate with a level of reported symptoms.
The intradural anatomic features of the filum terminale in fresh human cadavers was evaluated, which helped to analyze the morphological parameters relevant for diagnosing tethered spinal cord syndrome. The research was conducted by the scientists by dissecting 41 cadavers and then evaluated the height, weight, age, FT length, FT diameter at midpoint and initial point, and the topographic relationships of the initial fusion points adjacent to the vertebrae. This anatomic study concluded that there was a large variation in the parameters of the filum terminale and that 6 out of the 41 cadavers met the criteria for tethered spinal cord syndrome.
Adult presentation in diastematomyelia is unusual. With modern imaging techniques, various types of spinal dysraphism are being diagnosed in adults with increasing frequency. The commonest location of the lesion is at first to third lumbar vertebrae. Lumbosacral adult diastematomyelia is even rarer. Bony malformations and dysplasias are generally recognized on plain x-rays. MRI scanning is often the first choice of screening and diagnosis. MRI generally give adequate analysis of the spinal cord deformities although it has some limitations in giving detailed bone anatomy. Combined myelographic and post-myelographic CT scan is the most effective diagnostic tool in demonstrating the detailed bone, intradural and extradural pathological anatomy of the affected and adjacent spinal canal levels and of the bony spur.
Prenatal ultrasound diagnosis of this anomaly is usually possible in the early to mid third-trimester. An extra posterior echogenic focus between the fetal spinal laminae is seen with splaying of the posterior elements, thus allowing for early surgical intervention and have a favorable prognosis. Prenate ultrasound could also detect whether the diastematomyelia is isolated, with the skin intact or association with any serious neural tube defects. Progressive neurological lesions may result from the "tethering cord syndrome" (fixation of the spinal cord) by the diastematomyelia phenomenon or any of the associated disorders such as myelodysplasia, dysraphia of the spinal cord.
Scheuermann's disease is self-limiting after growth is complete, meaning that it generally runs its course and never presents further complication. Typically, however, once the patient is fully grown, the bones will maintain the deformity. For this reason, there are many treatment methods and options available that aim to correct the kyphosis while the spine is still growing, and especially aim to prevent it from worsening.
While there is no explanation for what causes Scheuermann's Disease, there are ways to treat it. For decades there has been a lot of controversy surrounding treatment options. For less extreme cases, manual medicine, physical therapy and/or back braces can help reverse or stop the kyphosis before it does become severe. Because the disease is often benign, and because back surgery includes many risks, surgery is usually considered a last resort for patients. In severe or extreme cases, patients may be treated through an extensive surgical procedure in an effort to prevent the disease from worsening or harming the body.
In Germany, a standard treatment for both Scheuermann's disease and lumbar kyphosis is the Schroth method, a system of specialized physical therapy for scoliosis and related spinal deformities. The method has been shown to reduce pain and decrease kyphotic angle significantly during an inpatient treatment program.
The vertebral column, also known as the backbone or spine, is part of the axial skeleton. The vertebral column is the defining characteristic of a vertebrate, in which the notochord (a flexible rod of uniform composition) found in all chordates has been replaced by a segmented series of bones—vertebrae separated by intervertebral discs. The vertebral column houses the spinal canal, a cavity that encloses and protects the spinal cord.
There are about 50,000 species of animals that have a vertebral column. The human vertebral column is one of the most-studied examples.
Scoliosis refers to yet another form of abnormal curvature in which the person’s spine takes an “S” or “C” shape. Scoliosis too has similar forms of treatments available as Kyphosis including bracing, physical therapy and various types of surgeries. Typically, a human spine is straight but in Scoliosis patients; there may be a curve of ten degrees in either direction, left or right.
There are two tests that can provide a definite diagnosis of myelomalacia; magnetic resonance imaging (MRI), or myelography. Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to visualize the internal structure of the body used in the diagnosing of myelomalacia. Certain MRI findings can detect where bone density and matter has been lost in people with spinal cord injuries. Diffuse hyperintensity appreciated on T2-weighted imaging of the spinal cord can be an indication of the onset or progression of myelomalacia
Scoliosis is well established and even evaluated at an early age. It is typically quantified using the standardized Cobb angle method. This method consists of measuring the degree of deformity by the angle between two successive vertebrae. The Cobb method was accepted by the Scoliosis Research Society (SRS) in 1966. It serves as the standard method for quantification of scoliosis deformities. Sagittal plane posture aberrations such as cervical and lumbar lordosis and thoracic kyphosis have yet to be quantified due to considerable inter-individual variability in normal sagittal curvature. The Cobb method was also one of the first techniques used to quantify sagittal deformity. As a 2D measurement technique it has limitations and new techniques are being proposed for measurement of these curvatures. Most recently, 3D imaging techniques using computed tomography (CT) and magnetic resonance (MR) have been attempted. These techniques are promising but lack the reliability and validity necessary to be used as a reference for clinical purposes.
Posture assessment has also become quite popular in many practical environments like the personal training and sports conditioning settings. The need for reliable methods of posture assessment as a screening tool is warranted. Current available programs such as those through the National Posture Institute (NPI) and Posture Print are recommended for the practical setting but cost close to $1000 and are clearly a profiteering scam by individuals not at all concerned with human well-being.
Chronic deviations from neutral spine lead to improper posture, increased stress on the back and causes discomfort and damage. People who sit for long hours on the job are susceptible to a number of misalignments.
"Neutral spine" is ideally maintained while sitting, standing, and sleeping.
Surgery
Surgical intervention is warranted in patients who present with new onset neurological signs and symptoms or have a history of progressive neurological manifestations which can be related to this abnormality. The surgical procedure required for the effective treatment of diastematomyelia includes decompression (surgery) of neural elements and removal of bony spur. This may be accomplished with or without resection and repair of the duplicated dural sacs. Resection and repair of the duplicated dural sacs is preferred since the dural abnormality may partly contribute to the "tethering" process responsible for the symptoms of this condition.
Post-myelographic CT scanning provides individualized detailed maps that enable surgical treatment of cervical diastematomyelia, first performed in 1983.
Observation
Asymptomatic patients do not require surgical treatment. These patients should have regular neurological examinations since it is known that the condition can deteriorate. If any progression is identified, then a resection should be performed.
Potential non-surgical treatments include:
- Education about the course of the condition and how to relieve symptoms
- Medicines to relieve pain and inflammation, such as acetaminophen, nonsteroidal anti-inflammatory drugs (NSAIDs)
- Exercise, to maintain or achieve overall good health, aerobic exercise, such as riding a stationary bicycle, which allows for a forward lean, walking, or swimming can relieve symptoms
- Weight loss, to relieve symptoms and slow progression of the stenosis
- Physical therapy, to provide education, instruction, and support for self-care; physical therapy instructs on stretching and strength exercises that may lead to a decrease in pain and other symptoms
Potential surgical treatments include:
- Anterior cervical discectomy and fusion - A surgical treatment of nerve root or spinal cord compression by decompressing the spinal cord and nerve roots of the cervical spine with a discectomy in order to stabilize the corresponding vertebrae.
- Laminoplasty - A surgical procedure relieve pressure on the spinal cord by cutting the lamina on both sides of the affected vertebrae (cutting through on one side and merely cutting a groove on the other) and then "swinging" the freed flap of bone open.
- Laminectomy - A surgical procedure in which the lamina of the vertebra is removed or trimmed to widen the spinal canal and create more space for the spinal nerves and thecal sac.
Excessive or abnormal spinal curvature is classed as a spinal disease or dorsopathy and includes the following abnormal curvatures:
- Kyphosis is an exaggerated kyphotic (concave) curvature in the thoracic region, also called hyperkyphosis. This produces the so-called "humpback" or "dowager's hump", a condition commonly resulting from osteoporosis.
- Lordosis as an exaggerated lordotic (convex) curvature of the lumbar region, is known as lumbar hyperlordosis and also as "swayback". Temporary lordosis is common during pregnancy.
- Scoliosis, lateral curvature, is the most common abnormal curvature, occurring in 0.5% of the population. It is more common among females and may result from unequal growth of the two sides of one or more vertebrae, so that they do not fuse properly. It can also be caused by pulmonary atelectasis (partial or complete deflation of one or more lobes of the lungs) as observed in asthma or pneumothorax.
- Kyphoscoliosis, a combination of kyphosis and scoliosis.
Vertebral fractures of the thoracic vertebrae, lumbar vertebrae or sacrum are usually associated with major trauma and can cause spinal cord injury that results in a neurological deficit.