Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
MAIS is only diagnosed in normal phenotypic males, and is not typically investigated except in cases of male infertility. MAIS has a mild presentation that often goes unnoticed and untreated; even with semenological, clinical and laboratory data, it can be difficult to distinguish between men with and without MAIS, and thus a diagnosis of MAIS is not usually made without confirmation of an AR gene mutation. The androgen sensitivity index (ASI), defined as the product of luteinizing hormone (LH) and testosterone (T), is frequently raised in individuals with all forms of AIS, including MAIS, although many individuals with MAIS have an ASI in the normal range. Testosterone levels may be elevated despite normal levels of luteinizing hormone. Conversion of testosterone (T) to dihydrotestosterone (DHT) may be impaired, although to a lesser extent than is seen in 5α-reductase deficiency. A high ASI in a normal phenotypic male, especially when combined with azoospermia or oligospermia, decreased secondary terminal hair, and/or impaired conversion of T to DHT, can be indicative of MAIS, and may warrant genetic testing.
Due to its mild presentation, MAIS often goes unnoticed and untreated. Management of MAIS is currently limited to symptomatic management; methods to correct a malfunctioning androgen receptor protein that result from an AR gene mutation are not currently available. Treatment includes surgical correction of mild gynecomastia, minor hypospadias repair, and testosterone supplementation. Supraphysiological doses of testosterone have been shown to correct diminished secondary sexual characteristics in men with MAIS, as well as to reverse infertility due to low sperm count. As is the case with PAIS, men with MAIS will experience side effects from androgen therapy (such as the suppression of the hypothalamic-pituitary-gonadal axis) at a higher dosage than unaffected men. Careful monitoring is required to ensure the safety and efficacy of treatment. Regular breast and prostate examinations may be necessary due to comorbid association with breast and prostate cancers.
The vast majority of triple X women are never diagnosed, unless they undergo tests for other medical reasons later in life. Triple X can be diagnosed by a blood test which is able to look at a person’s chromosomes (karyotype). Abnormalities on the electroencephalography may be present.
Triple X syndrome can be diagnosed prenatally through amniocentesis or chorionic villus sampling. In Denmark, between 1970 and 1984, 76% of the prenatally diagnosed fetuses with triple-X were aborted. Between 1985-1987, this figure dropped to 56%. With improved information, the number of abortions diminished. In the Netherlands, between 1991 and 2000, 33% (18/54) of the couples that were confronted with a prenatal diagnosis of 47, XXX elected to abort. If balanced information is provided to prospective parents, prenatally, the incidence of voluntary termination (abortion) is reduced.
Children with XXY differ little from other children. Although they can face problems during adolescence, often emotional and behavioral, and difficulties at school, most of them can achieve full independence from their families in adulthood. Most can lead a normal, healthy life.
The results of a study carried out on 87 Australian adults with the syndrome shows that those who have had a diagnosis and appropriate treatment from a very young age had a significant benefit with respect to those who had been diagnosed in adulthood.
There is research suggesting Klinefelter syndrome substantially decreases life expectancy among affected individuals, though the evidence is not definitive. A 1985 publication identified a greater mortality mainly due to diseases of the aortic valve, development of tumors and possible subarachnoid hemorrhages, reducing life expectancy by about 5 years. Later studies have reduced this estimated reduction to an average of 2.1 years. These results are still questioned data, are not absolute, and will need further testing.
About 10% of Klinefelter cases are found by prenatal diagnosis. The first clinical features may appear in early childhood or, more frequently, during puberty, such as lack of secondary sexual characteristics and aspermatogenesis. Despite the presence of small testes, only a quarter of the affected males are recognized as having Klinefelter syndrome at puberty. Another quarter receive their diagnosis in late adulthood. About 64% of affected individuals are never recognized. Often the diagnosis is made incidentally as a result of examinations and medical visits for reasons not linked to the condition.
The standard diagnostic method is the analysis of the chromosomes' karyotype on lymphocytes. In the past, the observation of the Barr body was common practice as well. To confirm mosaicism, it is also possible to analyze the karyotype using dermal fibroblasts or testicular tissue.
Other methods may be: research of high serum levels of gonadotropins (follicle-stimulating hormone and luteinizing hormone), presence of azoospermia, determination of the sex chromatin, and prenatally via chorionic villus sampling or amniocentesis. A 2002 literature review of elective abortion rates found that approximately 58% of pregnancies in the United States with a diagnosis of Klinefelter syndrome were terminated.
The most common diagnostic dilemma in otherwise normal boys is distinguishing a retractile testis from a testis that will not descend spontaneously into the scrotum. Retractile testes are more common than truly undescended testes and do not need to be operated on. In normal males, as the cremaster muscle relaxes or contracts, the testis moves lower or higher ("retracts") in the scrotum. This cremasteric reflex is much more active in infant boys than older men. A retractile testis high in the scrotum can be difficult to distinguish from a position in the lower inguinal canal. Though there are various maneuvers used to do so, such as using a cross-legged position, soaping the examiner's fingers, or examining in a warm bath, the benefit of surgery in these cases can be a matter of clinical judgment.
In the minority of cases with bilaterally non-palpable testes, further testing to locate the testes, assess their function, and exclude additional problems is often useful. Pelvic ultrasound or magnetic resonance imaging performed and interpreted by a radiologist can often, but not invariably, locate the testes while confirming absence of a uterus. A karyotype can confirm or exclude forms of dysgenetic primary hypogonadism, such as Klinefelter syndrome or mixed gonadal dysgenesis.
Hormone levels (especially gonadotropins and AMH) can help confirm that there are hormonally functional testes worth attempting to rescue, as can stimulation with a few injections of human chorionic gonadotropin to elicit a rise of the testosterone level. Occasionally these tests reveal an unsuspected and more complicated intersex condition.
In the even smaller minority of cryptorchid infants who have other obvious birth defects of the genitalia, further testing is crucial and has a high likelihood of detecting an intersex condition or other anatomic anomalies. Ambiguity can indicate either impaired androgen synthesis or reduced sensitivity. The presence of a uterus by pelvic ultrasound suggests either persistent Müllerian duct syndrome (AMH deficiency or insensitivity) or a severely virilized genetic female with congenital adrenal hyperplasia. An unambiguous micropenis, especially accompanied by hypoglycemia or jaundice, suggests congenital hypopituitarism.
Transvaginal ultrasonography can be used to determine antral follicle count (AFC). This is an easy-to-perform and noninvasive method (but there may be some discomfort). Several studies show this test to be more accurate than basal FSH testing for older women (< 44 years of age) in predicting IVF outcome. This method of determining ovarian reserve is recommended by Dr. Sherman J. Silber, author and medical director of the Infertility Center of St. Louis.
AFC and Median Fertile Years Remaining
Note, the above table from Silber's book may be in error as it has no basis in any scientific study, and contradicts data from Broekmans, et al. 2004 study. The above table closely matches Broekmans' data only if interpreted as the total AFC of both ovaries. Only antral follicles that were 2–10 mm in size were counted in Broekmans' study.
Age and AFC and Age of Loss of Natural Fertility (See Broekmans, et al. [2004])
AFC and FSH Stimulation Recommendations for Cycles Using Assisted Reproduction Technology
Elevated serum follicle stimulating hormone (FSH) level measured on day three of the menstrual cycle. (First day of period flow is counted as day one. Spotting is not considered start of period.) If a lower value occurs from later testing, the highest value is considered the most predictive. FSH assays can differ somewhat so reference ranges as to what is normal, premenopausal or menopausal should be based on ranges provided by the laboratory doing the testing. Estradiol (E2) should also be measured as women who ovulate early may have elevated E2 levels above 80 pg/mL (due to early follicle recruitment, possibly due to a low serum inhibin B level) which will mask an elevated FSH level and give a false negative result.
High FSH strongly predicts poor IVF response in older women, less so in younger women. One study showed an elevated basal day-three FSH is correlated with diminished ovarian reserve in women aged over 35 years and is associated with poor pregnancy rates after treatment of ovulation induction(6% versus 42%).
The rates for spontaneous pregnancy in older women with elevated FSH levels have not been studied very well and the spontaneous pregnancy success rate, while low, may be underestimated due to non reporting bias, as most infertility clinics will not accept women over the age of forty with FSH levels in the premenopausal range or higher.
A woman can have a normal day-three FSH level yet still respond poorly to ovarian stimulation and hence can be considered to have poor reserve. Thus, another FSH-based test is often used to detect poor ovarian reserve: the clomid challenge test, also known as CCCT(clomiphene citrate challenge test).
The primary management of cryptorchidism is watchful waiting, due to the high likelihood of self-resolution. Where this fails, a surgery, called orchiopexy, is effective if inguinal testes have not descended after 4–6 months. Surgery is often performed by a pediatric urologist or pediatric surgeon, but in many communities still by a general urologist or surgeon.
When the undescended testis is in the inguinal canal, hormonal therapy is sometimes attempted and very occasionally successful. The most commonly used hormone therapy is human chorionic gonadotropin (HCG). A series of hCG injections (10 injections over 5 weeks is common) is given and the status of the testis/testes is reassessed at the end. Although many trials have been published, the reported success rates range widely, from roughly 5 to 50%, probably reflecting the varying criteria for distinguishing retractile testes from low inguinal testes. Hormone treatment does have the occasional incidental benefits of allowing confirmation of Leydig cell responsiveness (proven by a rise of the testosterone by the end of the injections) or inducing additional growth of a small penis (via the testosterone rise). Some surgeons have reported facilitation of surgery, perhaps by enhancing the size, vascularity, or healing of the tissue. A newer hormonal intervention used in Europe is the use of GnRH analogs such as nafarelin or buserelin; the success rates and putative mechanism of action are similar to hCG, but some surgeons have combined the two treatments and reported higher descent rates. Limited evidence suggests that germ cell count is slightly better after hormone treatment; whether this translates into better sperm counts and fertility rates at maturity has not been established. The cost of either type of hormone treatment is less than that of surgery and the chance of complications at appropriate doses is minimal. Nevertheless, despite the potential advantages of a trial of hormonal therapy, many surgeons do not consider the success rates high enough to be worth the trouble since the surgery itself is usually simple and uncomplicated.
In cases where the testes are identified preoperatively in the inguinal canal, orchiopexy is often performed as an outpatient and has a very low complication rate. An incision is made over the inguinal canal. The testis with accompanying cord structure and blood supply is exposed, partially separated from the surrounding tissues ("mobilized"), and brought into the scrotum. It is sutured to the scrotal tissue or enclosed in a "subdartos pouch." The associated passage back into the inguinal canal, an inguinal hernia, is closed to prevent re-ascent.
In patients with intraabdominal maldescended testis, laparoscopy is useful to see for oneself the pelvic structures, position of the testis and decide upon surgery ( single or staged procedure ).
Surgery becomes more complicated if the blood supply is not ample and elastic enough to be stretched into the scrotum. In these cases, the supply may be divided, some vessels sacrificed with expectation of adequate collateral circulation. In the worst case, the testis must be "auto-transplanted" into the scrotum, with all connecting blood vessels cut and reconnected ("anastomosed").
When the testis is in the abdomen, the first stage of surgery is exploration to locate it, assess its viability, and determine the safest way to maintain or establish the blood supply. Multi-stage surgeries, or autotransplantation and anastomosis, are more often necessary in these situations. Just as often, intra-abdominal exploration discovers that the testis is non-existent ("vanished"), or dysplastic and not salvageable.
The principal major complication of all types of orchiopexy is a loss of the blood supply to the testis, resulting in loss of the testis due to ischemic atrophy or fibrosis.
Spermatogenesis arrest is a complex process of interruption in the differentiation of germinal cells of specific cellular type, which elicits an altered spermatozoa formation. Spermatogenic arrest is usually due to genetic factors resulting in irreversible azoospermia. However some cases may be consecutive to hormonal, thermic, or toxic factors and may be reversible either spontaneously or after a specific treatment.
To some extent, it is possible to change testicular size. Short of direct injury or subjecting them to adverse conditions, e.g., higher temperature than they are normally accustomed to, they can be shrunk by competing against their intrinsic hormonal function through the use of externally administered steroidal hormones. Steroids taken for muscle enhancement (especially anabolic steroids) often have the undesired side effect of testicular shrinkage.
Similarly, stimulation of testicular functions via gonadotropic-like hormones may enlarge their size. Testes may shrink or atrophy during hormone replacement therapy or through chemical castration.
In all cases, the loss in testes volume corresponds with a loss of spermatogenesis.
Many people with MDP syndrome are high achievers intellectually following careers in law, medicine and computing. A crucial point is that they do not have progeria and there is no evidence of accelerated intellectual decline with age in these patients. Equally life expectancy has not been shown to be reduced. Patients of 65 have been described in the literature and none of the patients are known to have malignancy. Therefore, there are many crucial differences with progeria and the name of progeroid in the title is confusing as this really refers to the lack of fat in the face and taut skin and not any intellectual or other age associated features.
Triple X syndrome occurs in around 1 in 1,000 girls. On average, five to ten girls with triple X syndrome are born in the United States each day.
Deafness is a feature of MDP syndrome as a result of the nerves not working well and people often have difficulty getting hearing aids because of the small size of their ears. Digital hearing aids can be helpful and audiometry follow up will be needed.
Testicular size as a proportion of body weight varies widely. In the mammalian kingdom, there is a tendency for testicular size to correspond with multiple mates (e.g., harems, polygamy). Production of testicular output sperm and spermatic fluid is also larger in polygamous animals, possibly a spermatogenic competition for survival. The testes of the right whale are likely to be the largest of any animal, each weighing around 500 kg (1,100 lb).
Among the Hominidae, gorillas have little female promiscuity and sperm competition and the testes are small compared to body weight (0.03%). Chimpanzees have high promiscuity and large testes compared to body weight (0.3%). Human testicular size falls between these extremes (0.08%).
Testis weight also varies in seasonal breeders like deer and horses. The change is related to changes in testosterone production.
Human testicles are smaller than chimpanzee testicles but larger than gorilla testicles.
Diagnosis should be based on the clinical and radiographic findings and a genetic analysis can be assessed.
Revesz syndrome has so far been observed only in children. There is not much information about the disease because of its low frequency in general population and under reporting of cases.
Bloom syndrome is diagnosed using any of three tests - the presence of quadriradial (Qr, a four-armed chromatid interchange) in cultured blood lymphocytes, and/or the elevated levels of Sister chromatid exchange in cells of any type, and/or the mutation in the BLM gene. The US Food and Drug Administration (FDA) announced on February 19, 2015 that they have authorized marketing of a direct-to-consumer genetic test from 23andMe. The test is designed to identify healthy individuals who carry a gene that could cause Bloom Syndrome in their offspring.
Genetic tests, including prenatal testing, are available for both confirmed forms. Molecular testing is considered the gold standard of diagnosis.
Testing at pregnancy to determine whether an unborn child is affected is possible if genetic testing in a family has identified a DMPK mutation. This can be done at 10–12 weeks gestation by a procedure called chorionic villus sampling (CVS) that involves removing a tiny piece of the placenta and analyzing DNA from its cells. It can also be done by amniocentesis after 14 weeks gestation by removing a small amount of the amniotic fluid surrounding the baby and analyzing the cells in the fluid. Each of these procedures has a small risk of miscarriage associated with it and those who are interested in learning more should check with their doctor or genetic counselor.
There is also another procedure called preimplantation diagnosis that allows a couple to have a child that is unaffected with the genetic condition in their family. This procedure is experimental and not widely available. Those interested in learning more about this procedure should check with their doctor or genetic counselor.
It is possible to test someone who is at risk for developing DM1 before they are showing symptoms to see whether they inherited an expanded trinucleotide repeat. This is called predictive testing. Predictive testing cannot determine the age of onset that someone will begin to have symptoms, or the course of the disease. If the child is not having symptoms, the testing is not possible with an exception of emancipated minors as a policy.
Sensenbrenner syndrome (OMIM #218330) is a rare (less than 20 cases reported by 2010) multisystem disease first described in 1975. It is inherited in an autosomal recessive fashion, and a number of genes appear to be responsible. Three genes responsible have been identified: intraflagellar transport (IFT)122 (WDR10), IFT43 — a subunit of the IFT complex A machinery of primary cilia, and WDR35 (IFT121: TULP4)
It is also known as Sensenbrenner–Dorst–Owens syndrome, Levin Syndrome I and cranioectodermal dysplasia (CED)
Patients are usually managed by a multidisciplinary team including surgeons, gynecologists, and dermatologists because of the complex nature of this disorder. Follow-up for the increased risk of breast cancer risk includes monthly breast self-examination, annual breast examination, and mammography at age 30 or five years earlier than the youngest age of breast cancer in the family. The magnitude of the risk of breast cancer justifies routine screening with breast MRI as per published guidelines.
Bloom syndrome has no specific treatment; however, avoiding sun exposure and using sunscreens can help prevent some of the cutaneous changes associated with photo-sensitivity. Efforts to minimize exposure to other known environmental mutagens are also advisable.
Those affected were born prematurely, and suffered from feeding difficulties and developmental delays. They presented with progressive kidney disease and primary pulmonary hypertension, and ultimately died.
This condition has been linked to mutations in the ribosomal GTPase BMS1 gene.