Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Developmental Verbal Dyspraxia can be diagnosed by a speech language pathologist (SLP) through specific exams that measure oral mechanisms of speech. The oral mechanisms exam involves tasks such as pursing lips, blowing, licking lips, elevating the tongue, and also involves an examination of the mouth. A complete exam also involves observation of the patient eating and talking. Tests such as the Kaufman Speech Praxis test, a more formal examination, are also used in diagnosis.
A differential diagnosis of DVD/CAS is often not possible for children under the age of 2 years old. Even when children are between 2–3 years, a clear diagnosis cannot always occur, because at this age, they may still be unable to focus on, or cooperate with, diagnostic testing.
Apraxia of speech can be diagnosed by a speech language pathologist (SLP) through specific exams that measure oral mechanisms of speech. The oral mechanisms exam involves tasks such as pursing lips, blowing, licking lips, elevating the tongue, and also involves an examination of the mouth. A complete exam also involves observation of the patient eating and talking. SLPs do not agree on a specific set of characteristics that make up the apraxia of speech diagnosis, so any of the characteristics from the section above could be used to form a diagnosis. Patients may be asked to perform other daily tasks such as reading, writing, and conversing with others. In situations involving brain damage, an MRI brain scan also helps identify damaged areas of the brain.
A differential diagnosis must be used in order to rule out other similar or alternative disorders. Although disorders such as expressive aphasia, conduction aphasia, and dysarthria involve similar symptoms as apraxia of speech, the disorders must be distinguished in order to correctly treat the patients. While AOS involves the motor planning or processing stage of speech, aphasic disorders can involve other language processes.
According to Ziegler et al., this difficulty in diagnosis derives from the unknown causes and function of the disorder, making it hard to set definite parameters for AOS identification. Specifically, he explains that oral-facial apraxia, dysarthria, and aphasic phonological impairment are the three distinctly different disorders that cause individuals to display symptoms that are often similar to those of someone with AOS, and that these close relatives must be correctly ruled out by a Speech Language Pathologist before AOS can be given as a diagnosis. In this way, AOS is a diagnosis of exclusion, and is generally recognized when all other similar speech sound production disorders are eliminated.
TMoA is diagnosed by the referring physician and speech-language pathologist (SLP). The overall sign of TMoA is nonfluent, reduced, fragmentary echoic, and perseverative speech with frequent hesitations and pauses. Patients with TMoA also have difficulty initiating and maintaining speech. However, speech articulation and auditory comprehension remain typical. The hallmark sign of TMoA is intact repetition in the presence of these signs and symptoms.
TMoA, or any other type of aphasia, is identified and diagnosed through the screening and assessment process. Screening can be conducted by a SLP or other professional when there is a suspected aphasia. The screening does not diagnose aphasia, rather it points to the need for a further comprehensive assessment. A screening typically includes evaluation of oral motor functions, speech production skills, comprehension, use of written and verbal language, cognitive communication, swallowing, and hearing. Both the screening and assessment must be sensitive to the patient’s linguistic and cultural differences. An individual will be recommended to receive a comprehensive assessment if their screening shows signs of aphasia. Under the American Speech-Language-Hearing Association (ASHA) and World Health Organization (WHO) guidelines and the "International Classification of Functioning, Disability and Health" (ICF) framework, the comprehensive assessment encompasses not only speech and language, but also impairments in body structure and function, co-morbid deficits, limitations in activity and participation, and contextual (environmental and personal) factors. The assessment can be static (current functioning) or dynamic (ongoing) and the assessment tools can be standardized or nonstandardized. Typically, the assessment for aphasia includes a gathering of a case history, a self-report from the patient, an oral-motor examination, assessment of expressive and receptive language in spoken and written forms, and identification of facilitators and barriers to patient success. From this assessment, the SLP will determine type of aphasia and the patient's communicative strengths and weaknesses and how their diagnosis may impact their overall quality of life.
In cases of acute AOS (stroke), spontaneous recovery may occur, in which previous speech abilities reappear on their own. All other cases of acquired AOS require a form of therapy; however the therapy varies with the individual needs of the patient. Typically, treatment involves one-on-one therapy with a speech language pathologist (SLP). For severe forms of AOS, therapy may involve multiple sessions per week, which is reduced with speech improvement. Another main theme in AOS treatment is the use of repetition in order to achieve a large amount of target utterances, or desired speech usages.
There are various treatment techniques for AOS. One technique, called the Linguistic Approach, utilizes the rules for sounds and sequences. This approach focuses on the placement of the mouth in forming speech sounds. Another type of treatment is the Motor-Programming Approach, in which the motor movements necessary for speech are practiced. This technique utilizes a great amount of repetition in order to practice the sequences and transitions that are necessary in between production of sounds.
Research about the treatment of apraxia has revealed four main categories: articulatory-kinematic, rate/rhythm control, intersystemic facilitation/reorganization treatments, and alternative/augmentative communication.
- Articulatory-kinematic treatments almost always require verbal production in order to bring about improvement of speech. One common technique for this is modeling or repetition in order to establish the desired speech behavior. Articulatory-kinematic treatments are based on the importance of patients to improve spatial and temporal aspects of speech production.
- Rate and rhythm control treatments exist to improve errors in patients’ timing of speech, a common characteristic of Apraxia. These techniques often include an external source of control like metronomic pacing, for example, in repeated speech productions.
- Intersystemic reorganization/facilitation techniques often involve physical body or limb gestural approaches to improve speech. Gestures are usually combined with verbalization. It is thought that limb gestures may improve the organization of speech production.
- Finally, alternative and augmentative communication approaches to treatment of apraxia are highly individualized for each patient. However, they often involve a "comprehensive communication system" that may include "speech, a communication book aid, a spelling system, a drawing system, a gestural system, technologies, and informed speech partners".
One specific treatment method is referred to as PROMPT. This acronym stands for Prompts for Restructuring Oral Muscular Phonetic Targets, and takes a hands on multidimensional approach at treating speech production disorders. PROMPT therapists integrate physical-sensory, cognitive-linguistic, and social-emotional aspects of motor performance. The main focus is developing language interaction through this tactile-kinetic approach by using touch cues to facilitate the articulatory movements associated with individual phonemes, and eventually words.
One study describes the use of electropalatography (EPG) to treat a patient with severe acquired apraxia of speech. EPG is a computer-based tool for assessment and treatment of speech motor issues. The program allows patients to see the placement of articulators during speech production thus aiding them in attempting to correct errors. Originally after two years of speech therapy, the patient exhibited speech motor and production problems including problems with phonation, articulation, and resonance. This study showed that EPG therapy gave the patient valuable visual feedback to clarify speech movements that had been difficult for the patient to complete when given only auditory feedback.
While many studies are still exploring the various treatment methods, a few suggestions from ASHA for treating apraxia patients include the integration of objective treatment evidence, theoretical rationale, clinical knowledge and experience, and the needs and goals of the patient
There is no cure for DVD/CAS, but with appropriate, intensive intervention, people with the disorder can improve significantly.
DVD/CAS requires various forms of therapy which varies with the individual needs of the patient. Typically, treatment involves one-on-one therapy with a speech language pathologist (SLP). In children with DVD/CAS, consistency is a key element in treatment. Consistency in the form of communication, as well as the development and use of oral communication are extremely important in aiding a child's speech learning process.
Many therapy approaches are not supported by thorough evidence; however, the aspects of treatment that do seem to be agreed upon are the following:
- Treatment needs to be intense and highly individualized, with about 3-5 therapy sessions each week
- A maximum of 30 minutes per session is best for young children
- Principles of motor learning theory and intense speech-motor practice seem to be the most effective
- Non-speech oral motor therapy is not necessary or sufficient
- A multi-sensory approach to therapy may be beneficial: using sign language, pictures, tactile cues, visual prompts, and Augmentative and Alternative Communication (AAC) can be helpful.
Although these aspects of treatment are supported by much clinical documentation, they lack evidence from systematic research studies. In ASHA's position statement on DVD/CAS, ASHA states there is a critical need for collaborative, interdisciplinary, and programmatic research on the neural substrates, behavioral correlates, and treatment options for DVD/CAS.
Classifying speech into normal and disordered is more problematic than it first seems. By a strict classification, only 5% to 10% of the population has a completely normal manner of speaking (with respect to all parameters) and healthy voice; all others suffer from one disorder or another.
There are three different levels of classification when determining the magnitude and type of a speech disorders and the proper treatment or therapy:
1. Sounds the patient can produce
1. Phonemic – can be produced easily; used meaningfully and constructively
2. Phonetic – produced only upon request; not used consistently, meaningfully, or constructively; not used in connected speech
2. Stimulate sounds
1. Easily stimulated
2. Stimulate after demonstration and probing (i.e. with a tongue depressor)
3. Cannot produce the sound
1. Cannot be produced voluntarily
2. No production ever observed
Articulation problems resulting from dysarthria are treated by speech language pathologists, using a variety of techniques. Techniques used depend on the effect the dysarthria has on control of the articulators. Traditional treatments target the correction of deficits in rate (of articulation), prosody (appropriate emphasis and inflection, affected e.g. by apraxia of speech, right hemisphere brain damage, etc.), intensity (loudness of the voice, affected e.g. in hypokinetic dysarthrias such as in Parkinson's), resonance (ability to alter the vocal tract and resonating spaces for correct speech sounds) and phonation (control of the vocal folds for appropriate voice quality and valving of the airway). These treatments have usually involved exercises to increase strength and control over articulator muscles (which may be flaccid and weak, or overly tight and difficult to move), and using alternate speaking techniques to increase speaker intelligibility (how well someone's speech is understood by peers). With the speech language pathologist, there are several skills that are important to learn; safe chewing and swallowing techniques, avoiding conversations when feeling tired, repeat words and syllables over and over in order to learn the proper mouth movements, and techniques to deal with the frustration while speaking. Depending on the severity of the dysarthria, another possibility includes learning how to use a computer or flip cards in order to communicate more effectively.
More recent techniques based on the principles of motor learning (PML), such as LSVT (Lee Silverman voice treatment) speech therapy and specifically LSVT may improve voice and speech function in PD. For Parkinson's, aim to retrain speech skills through building new generalised motor programs, and attach great importance to regular practice, through peer/partner support and self-management. Regularity of practice, and when to practice, are the main issues in PML treatments, as they may determine the likelihood of generalization of new motor skills, and therefore how effective a treatment is.
Augmentative and alternative communication (AAC) devices that make coping with a dysarthria easier include speech synthesis and text-based telephones. These allow people who are unintelligible, or may be in the later stages of a progressive illness, to continue to be able to communicate without the need for fully intelligible speech.
In most cases the cause is unknown. However, there are various known causes of speech impediments, such as "hearing loss, neurological disorders, brain injury, intellectual disability, drug abuse, physical impairments such as cleft lip and palate, and vocal abuse or misuse."
Developmental verbal dyspraxia is a developmental inability to motor plan volitional movement for the production of speech in the absence of muscular weakness. Research has suggested links to the FOXP2 gene.
In relation to other types of aphasia, TMoA occurs less frequently, so there is less information on its prognosis. In general, for individuals with aphasia, most recovery is seen within 6 months of the stroke or injury although more recovery may continue in the following months or years. The timeline of recovery may look different depending on the type of stroke that caused the aphasia. With an ischemic stroke, recovery is greatest within the first two weeks and then diminishes overtime until the progress stabilizes. With a hemorrhagic stroke, the patient often shows little improvement in the first few weeks and then has relatively rapid recovery until they stabilize.
In a study involving eight patients with border zone lesions, all patients presented with transcortical mixed aphasia initially after the stroke. Three of these patients made a complete recovery within a few days post-stroke. For three other patients with more anterior lesions, their aphasia transitioned to TMoA. All participants in the study regained full language abilities within 18 months following their stroke. This suggests a positive long-term prognosis for patients with TMoA. However, this might not be the case for all patients and more research is needed in order to solidify these findings. Another study found that prognosis of TMoA is affected by lesion size. Smaller lesions typically cause delays in speech initiation; whereas, larger lesions lead to more profound language abnormalities and difficulty with abstract language abilities.
Research has shown that treatment has a direct effect on aphasia outcomes. Intensity, duration and timing of treatment all need to be taken in to consideration when choosing a course of treatment and determining a prognosis. In general, greater intensity leads to greater improvement. For duration, longer-term treatment produces more permanent changes. As for timing, beginning treatment too early may be difficult for the system which has not recovered enough to do intensive therapy, but beginning too late may result missing the window of the opportunity in which the most change can occur. Neuroplasticity, the brain's natural ability to reorganize itself following a traumatic event, occurs best when treatment connects simultaneous events, maintains attention, taps into positive emotion, utilizes repetition tasks, and is specific to the individual's needs.
Other factors affecting prognosis includes location and site of lesion. Since the lesion that results in TMoA usually occurs in the watershed area and does not directly involve the areas of the brain responsible for general language abilities, prognosis for these patients is good overall. Other factors that determine a patient’s prognosis include age, education prior to the stroke, gender, motivation, and support.
Dysarthria is the reduced ability to motor plan volitional movements needed for speech production as the result of weakness/paresis and/or paralysis of the musculature of the oral mechanism needed for respiration, phonation, resonance, articulation, and/or prosody.
Errors produced by children with speech sound disorders are typically classified into four categories:
- Omissions: Certain sounds are not produced — entire syllables or classes of sounds may be deleted; e.g., fi' for fish or 'at for cat.
- Additions (or Epentheses/Commissions): an extra sound or sounds are added to the intended word; e.g. puh-lane for plane.
- Distortions: Sounds are changed slightly so that the intended sound may be recognized but sounds "wrong," or may not sound like any sound in the language.
- Substitutions: One or more sounds are substituted for another; e.g., wabbit for rabbit or tow for cow.
Sometimes, even for experts, telling exactly which type has been made is not obvious — some distorted forms of /r/ may be mistaken for /w/ by a casual observer, yet may not actually be either sound but somewhere in between. Further, children with severe speech sound disorders may be difficult to understand, making it hard to tell what word was actually intended and thus what is actually wrong with it. Some terms can be used to describe more than one of the above categories, such as lisp, which is often the replacement of /s/ with /th/ (a substitution), but can be a distortion, producing /s/ just behind the teeth resulting in a sound somewhere between /s/ and /th/.
There are three different levels of classification when determining the magnitude and type of an error that is produced:
1. Sounds the patient can produce
1. A: Phonemic- can be produced easily; used meaningfully and contrastively
2. B: Phonetic- produced only upon request; not used consistently, meaningfully, or contrastively; not used in connected speech
2. Stimulable sounds
1. A: Easily stimulable
2. B: Stimulable after demonstration and probing (i.e. with a tongue depressor)
3. Cannot produce the sound
1. A: Cannot be produced voluntarily
2. B: No production ever observed
Note that omissions do not mean the sound cannot be produced, and some sounds may be produced more easily or frequently when appearing with certain other sounds: someone might be able to say "s" and "t" separately, but not "st," or may be able to produce a sound at the beginning of a word but not at the end. The magnitude of the problem will often vary between different sounds from the same speaker.
In a typical 2-year-old child, about 50% of speech may be intelligible. A 4-year-old child's speech should be intelligible overall, and a 7-year-old should be able to clearly produce most words consistent with community norms for their age. Misarticulation of certain difficult sounds ("l", "r",
"s", "z", "th", "ch", "dzh", and "zh") may be normal up to 8 years. Children with speech sound disorder have pronunciation difficulties inappropriate for their age, and the difficulties are not caused by hearing problems, congenital deformities, motor disorders or selective mutism.
The DSM-5 diagnostic criteria are as follows:
- A. Persistent difficulty with speech sound production that interferes with speech intelligibility or prevents verbal communication of messages.
- B. The disturbance causes limitations in effective communication that interfere with social participation, academic achievement, or occupational performance, individually or in any combination.
- C. Onset of symptoms is in the early developmental period.
- D. The difficulties are not attributable to congenital or acquired conditions, such as cerebral palsy, cleft palate, deafness or hearing loss, traumatic brain injury, or other medical or neurological conditions.
For most children, the disorder is not lifelong and speech difficulties improve with time and speech-language treatment. Prognosis is poorer for children who also have a language disorder, as that may be indicative of a learning disorder.
After the initial diagnosis of speech delay, a hearing test will be administered to ensure that hearing loss or deafness is not an underlying cause of the delay. If a child has successfully completed the hearing test, the therapy or therapies used will be determined. There are many therapies available for children that have been diagnosed with a speech delay, and for every child, the treatment and therapies needed vary with the degree, severity, and cause of the delay. While speech therapy is the most common form of intervention, many children may benefit from additional help from occupational and physical therapies as well. Physical and occupational therapies can be used for a child that is suffering from speech delay due to physical malformations and children that have also been diagnosed with a developmental delay such as autism or a language processing delay. Children that have been identified with hearing loss can be taught simple sign language to build and improve their vocabulary in addition to attending speech therapy.
The parents of a delayed child are the first and most important tool in helping overcome the speech delay. The parent or caregiver of the child can provide the following activities at home, in addition to the techniques suggested by a speech therapist, to positively influence the growth of speech and vocabulary:
- Reading to the child regularly
- Use of questions and simple, clear language
- Positive reinforcement in addition to patience
For children that are suffering from physical disorder that is causing difficulty forming and pronouncing words, parents and caregivers suggest using and introducing different food textures to exercise and build jaw muscles while promoting new movements of the jaw while chewing. Another less studied technique used to combat and treat speech delay is a form of therapy using music to promote and facilitate speech and language development. It is important to understand that music therapy is in its infancy and has yet to be thoroughly studied and practiced on children suffering from speech delays and impediments.
In 2006, the U.S. Department of Education indicated that more than 1.4 million students were served in the public schools' special education programs under the speech or language impairment category of IDEA 2004. This estimate does not include children who have speech/language problems secondary to other conditions such as deafness; this means that if all cases of speech or language impairments were included in the estimates, this category of impairment would be the largest. Another source has estimated that communication disorders—a larger category, which also includes hearing disorders—affect one of every 10 people in the United States.
ASHA has cited that 24.1% of children in school in the fall of 2003 received services for speech or language disorders—this amounts to a total of 1,460,583 children between 3 –21 years of age. Again, this estimate does not include children who have speech/language problems secondary to other conditions. Additional ASHA prevalence figures have suggested the following:
- Stuttering affects approximately 4% to 5% of children between the ages of 2 and 4.
- ASHA has indicated that in 2006:
- Almost 69% of SLPs served individuals with fluency problems.
- Almost 29% of SLPs served individuals with voice or resonance disorders.
- Approximately 61% of speech-language pathologists in schools indicated that they served individuals with SLI
- Almost 91% of SLPs in schools indicated that they servedindividuals with phonological/articulation disorder
- Estimates for language difficulty in preschool children range from 2% to 19%.
- Specific Language Impairment (SLI) is extremely common in children, and affects about 7% of the childhood population.
Speech-language pathologists (SLPs) offer many services to children with speech or language disabilities.
Dysarthria is a motor speech disorder resulting from neurological injury of the motor component of the motor-speech system and is characterized by poor articulation of phonemes. In other words, it is a condition in which problems effectively occur with the muscles that help produce speech, often making it very difficult to pronounce words. It is unrelated to problems with understanding language (that is aphasia), although a person can have both. Any of the speech subsystems (respiration, phonation, resonance, prosody, and articulation) can be affected, leading to impairments in intelligibility, audibility, naturalness, and efficiency of vocal communication. Dysarthria that has progressed to a total loss of speech is referred to as anarthria.
Neurological injury due to damage in the central or peripheral nervous system may result in weakness, paralysis, or a lack of coordination of the motor-speech system, producing dysarthria. These effects in turn hinder control over the tongue, throat, lips or lungs; for example, swallowing problems (dysphagia) are also often present in those with dysarthria.
Dysarthria does not include speech disorders from structural abnormalities, such as cleft palate, and must not be confused with apraxia of speech, which refers to problems in the planning and programming aspect of the motor-speech system. Just as the term "articulation" can mean either "speech" or "joint movement", so is the combining form of the same in the terms "dysarthria", "dysarthrosis", and "arthropathy"; the term "dysarthria" is conventionally reserved for the speech problem and is not used to refer to arthropathy, whereas "dysarthrosis" has both senses but usually refers to arthropathy.
Cranial nerves that control the muscles relevant to dysarthria include the trigeminal nerve's motor branch (V), the facial nerve (VII), the glossopharyngeal nerve (IX), the vagus nerve (X), and the hypoglossal nerve (XII). The term is from New Latin, "dys-" "dysfunctional, impaired" and "arthr-" "joint, vocal articulation")
Muteness or mutism () is an inability to speak, often caused by a speech disorder, hearing loss, or surgery. Someone who is mute may be so due to the unwillingness to speak in certain social situations.
Those who are physically mute may have problems with the parts of the human body required for human speech (the esophagus, vocal cords, lungs, mouth, or tongue, etc.).
Trauma or injury to Broca's area, located in the left inferior frontal cortex of the brain, can cause muteness.
Speech delay, also known as alalia, refers to a delay in the development or use of the mechanisms that produce speech. Speech, as distinct from language, refers to the actual process of making sounds, using such organs and structures as the lungs, vocal cords, mouth, tongue, teeth, etc. Language delay refers to a delay in the development or use of the knowledge of language.
Because language and speech are two independent stages, they may be individually delayed. For example, a child may be delayed in speech (i.e., unable to produce intelligible speech sounds), but not delayed in language. In this case, the child would be attempting to produce an age appropriate amount of language, but that language would be difficult or impossible to understand. Conversely, since a child with a language delay typically has not yet had the opportunity to produce speech sounds, it is likely to have a delay in speech as well.
Tachylalia can occur with the following:
- Normal speech
- Cluttering
- Parkinson's disease
- Cluttered speech
- Pressure of speech
Scanning speech, like other ataxic dysarthrias, is a symptom of lesions in the cerebellum. It is a typical symptom of multiple sclerosis, and it constitutes one of the three symptoms of Charcot's neurologic triad.
Scanning speech may be accompanied by other symptoms of cerebellar damage, such as gait, truncal and limb ataxia, intention tremor, inaccuracies in rapidly repeated movements and sudden, abrupt nausea and vomiting. The handwriting of such patients may also be abnormally large.
Sign language therapy has been identified as one of the top five most common treatments for auditory verbal agnosia. This type of therapy is most useful because, unlike other treatment methods, it does not rely on fixing the damaged areas of the brain. This is particularly important with AVA cases because it has been so hard to identify the causes of the agnosia in the first place, much less treat those areas directly. Sign language therapy, then, allows the person to cope and work around the disability, much in the same way it helps deaf people. In the beginning of therapy, most will work on identifying key objects and establishing an initial core vocabulary of signs. After this, the patient graduates to expand the vocabulary to intangible items or items that are not in view or present. Later, the patient learns single signs and then sentences consisting of two or more signs. In different cases, the sentences are first written down and then the patient is asked to sign them and speak them simultaneously. Because different AVA patients vary in the level of speech or comprehension they have, sign language therapy learning order and techniques are very specific to the individual's needs.
Tachylalia or tachylogia is extremely rapid speech. Tachylalia occurs in many clutterers and many people who have speech disorders.
Tachylalia is a generic term for speaking fast, and does not need to coincide with other speech problems. Tachylalia by itself is not considered a speech disorder.
Tachylalia may be exhibited as a single stream of rapid speech without prosody, and can be delivered quietly or mumbled. Tachylalia can be simulated by stimulating the brain electronically.
Scanning speech, also known as explosive speech, is a type of ataxic dysarthria in which spoken words are broken up into separate syllables, often separated by a noticeable pause, and spoken with varying force. The sentence "Walking is good exercise", for example, might be pronounced as "Walk (pause) ing is good ex (pause) er (pause) cise". Additionally, stress may be placed on unusual syllables.
The name is derived from literary scansion, because the speech pattern separates the syllables in a phrase much like scanning a poem counts the syllables in a line of poetry.
There is no universal agreement about the exact definition of this term. Some sources require only a noticeable pause between syllables, while others require other speech abnormalities, such as the unusual stress pattern on syllables. Some sources consider it a common, but not necessary, feature of ataxic dysarthria; others consider it exactly synonymous with ataxic dysarthria.