Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
When treated early, that is, before the onset of pulmonary hypertension, a good outcome is possible in patients with Shone’s syndrome. However, other surgical methods can be employed depending upon the patient’s medical background. The single most important determinant of poor outcome during the surgical management of patients with Shone's syndrome is the degree of involvement of the mitral valve and the presence of secondary pulmonary hypertension.
MR Imaging is best suited to evaluate patients with Shone's complex. Routine blood tests should be done prior to cardiac catheterization. The surgeons will repair the mitral valve and al the partial surgical removal of supramitral ring is done. This surgical method is preferred to the valve replacement procedure.
Classifying cardiac lesions in infants is quite difficult, and accurate diagnosis is essential. The diagnosis of Shone’s complex requires an ultrasound of the heart (echocardiogram) and a cardiac catheterization procedure, that is, insertion of a device through blood vessels in the groin to the heart that helps identify heart anatomy.
Sometimes CHD improves without treatment. Other defects are so small that they do not require any treatment. Most of the time CHD is serious and requires surgery and/or medications. Medications include diuretics, which aid the body in eliminating water, salts, and digoxin for strengthening the contraction of the heart. This slows the heartbeat and removes some fluid from tissues. Some defects require surgical procedures to restore circulation back to normal and in some cases, multiple surgeries are needed.
Interventional cardiology now offers patients minimally invasive alternatives to surgery for some patients. The Melody Transcatheter Pulmonary Valve (TPV), approved in Europe in 2006 and in the U.S. in 2010 under a Humanitarian Device Exemption (HDE), is designed to treat congenital heart disease patients with a dysfunctional conduit in their right ventricular outflow tract (RVOT). The RVOT is the connection between the heart and lungs; once blood reaches the lungs, it is enriched with oxygen before being pumped to the rest of the body. Transcatheter pulmonary valve technology provides a less-invasive means to extend the life of a failed RVOT conduit and is designed to allow physicians to deliver a replacement pulmonary valve via a catheter through the patient’s blood vessels.
Most patients require lifelong specialized cardiac care, first with a pediatric cardiologist and later with an adult congenital cardiologist. There are more than 1.8 million adults living with congenital heart defects.
A number of classification systems exist for congenital heart defects. In 2000 the International Congenital Heart Surgery Nomenclature was developed to provide a generic classification system.
The presence of LBBB results in that electrocardiography (ECG) cannot be used to diagnose left ventricular hypertrophy or Q wave infarction, because LBBB in itself results in widened QRS complex, and changes in the ST-T segment consistent with ischemia or injury.
The criteria to diagnose a left bundle branch block on the electrocardiogram:
- The heart rhythm must be supraventricular in origin
- The QRS duration must be ≥ 120 ms
- There should be a QS or rS complex in lead V1
- There should be a notched ('M'-shaped) R wave in lead V6.
The T wave should be deflected opposite the terminal deflection of the QRS complex. This is known as appropriate T wave discordance with bundle branch block. A concordant T wave may suggest ischemia or myocardial infarction.
There are also partial blocks of the left bundle branch: "left anterior fascicular block" (LAFB) and a "left posterior fascicular block" (LPFB). This refers to the bifurcation of the left bundle branch.
Aortopulmonary septal defect is a rare congenital heart disorder accounting for only 0.1-0.3% of congenital heart defects worldwide. It is characterized by a communication between the aortic and pulmonary arteries, with preservation of two normal semilunar valves. It is the result of an incomplete separation of the aorticopulmonary trunk that normally occurs in early fetal development with formation of the spiral septum. Aortopulmonary septal defects occur in isolation in about half of cases, the remainder are associated with more complex heart abnormalities.
There are numerous types, differentiated by the extent of the defect. These types are:
- Type I: simple defects leading to communication between the ascending aorta and pulmonic trunk
- Type II: defects that extend to the origin of the right pulmonary artery
- Type III: anomalous origin of the right pulmonary artery from the ascending aorta
It is also classified as simple or complex. Simple defects are those that do not require surgical repair, occur with no other defects, or those that require minor stright-forward repair (ductus arteriosus, atrial septal defect). Complex defects are those that occur with other anatomical anomalies or require non-standard repair.
The criteria to diagnose a right bundle branch block on the electrocardiogram:
- The heart rhythm must originate above the ventricles (i.e. sinoatrial node, atria or atrioventricular node) to activate the conduction system at the correct point.
- The QRS duration must be more than 100 ms (incomplete block) or more than 120 ms (complete block)
- There should be a terminal R wave in lead V1 (e.g. R, rR', rsR', rSR' or qR)
- There should be a slurred S wave in leads I and V6.
The T wave should be deflected opposite the terminal deflection of the QRS complex. This is known as appropriate T wave discordance with bundle branch block. A concordant T wave may suggest ischemia or myocardial infarction.
A mnemonic to distinguish between ECG signatures of left bundle branch block (LBBB) and right, is WiLLiaM MaRRoW; i.e., with LBBB, there is a W in lead V1 and an M in lead V6, whereas, with RBBB, there is an M in V1 and a W in V6.
Some people with bundle branch blocks are born with this condition. Many other acquire it as a consequence of heart disease. People with bundle branch blocks may still be quite active, and may have nothing more remarkable than an abnormal appearance to their ECG. However, when bundle blocks are complex and diffuse in the bundle systems, or associated with additional and significant ventricular muscle damage, they may be a sign of serious underlying heart disease. In more severe cases, a pacemaker may be required to restore an optimal electrical supply to the heart muscle.
An atrial septal defect is one possible cause of a right bundle branch block. In addition, a right bundle branch block may also result from Brugada syndrome, right ventricular hypertrophy, pulmonary embolism, ischaemic heart disease, rheumatic heart disease, myocarditis, cardiomyopathy or hypertension.
Depending on the anatomical location of the defect which leads to a bundle branch block, the blocks are further classified into:
- Right bundle branch block
- Left bundle branch block
The left bundle branch block can be further sub classified into:
- Left anterior fascicular block. In this case only the anterior half of the left bundle branch (fascicle) is involved
- Left posterior fascicular block. Only the posterior part of the left bundle branch is involved
Other classifications of bundle branch blocks are;
- Bifascicular block. This is a combination of right bundle branch block (RBBB) and either left anterior fascicular block (LAFB) or left posterior fascicular block (LPFB)
- Trifascicular block. This is a combination of right bundle branch block with either left anterior fascicular block or left posterior fascicular block together with a first degree AV block
- Tachycardia-dependent bundle branch block
The main pumping chamber, the ventricle, is protected (to a certain extent) against excessively high rates arising from the supraventricular areas by a "gating mechanism" at the atrioventricular node, which allows only a proportion of the fast impulses to pass through to the ventricles. In Wolff-Parkinson-White syndrome, a "bypass tract" avoids this node and its protection and the fast rate may be directly transmitted to the ventricles. This situation has characteristic findings on ECG.
Clinically, it is often asymptomatic by itself and considered benign in nature.
Most SVTs are unpleasant rather than life-threatening, although very fast heart rates can be problematic for those with underlying ischemic heart disease or the elderly. Episodes require treatment when they occur, but interval therapy may also be used to prevent or reduce recurrence. While some treatment modalities can be applied to all SVTs, there are specific therapies available to treat some sub-types. Effective treatment consequently requires knowledge of how and where the arrhythmia is initiated and its mode of spread.
SVTs can be classified by whether the AV node is involved in maintaining the rhythm. If so, slowing conduction through the AV node will terminate it. If not, AV nodal blocking maneuvers will not work, although transient AV block is still useful as it may unmask an underlying abnormal rhythm.
Second-degree atrioventricular block (AV block) is a disease of the electrical conduction system of the heart. It is a conduction block between the atria and ventricles. The presence of second-degree AV block is diagnosed when one or more (but not all) of the atrial impulses fail to conduct to the ventricles due to impaired conduction. It is classified as a block of the AV node and is categorized in between first-degree (slowed conduction) and third degree blocks (complete block).
There are two non-distinct types of second-degree AV block, called "Type 1" and "Type 2". In both types, a P wave is blocked from initiating a QRS complex; but, in Type 1, there are increasing delays in each cycle before the omission, whereas, in Type 2, there is no such pattern.
Type 1 second-degree heart block is considered a more benign entity than type 2 second-degree heart block with type 1 not having structural changes found on histology.
Both types are named after Woldemar Mobitz. Type I is also named for Karel Frederik Wenckebach, and type II is also named for John Hay.
It occurs because the duration of the refractory period of the myocardium is proportional to the R-R interval of the preceding cycle. A short R-R interval is associated with a shorter duration of action potential and vice versa. A long R-R cycle will prolong the ensuing refractory period, and if a shorter cycle follows, the beat terminating the cycle is likely to be conducted aberrantly. Because the refractory period of the right bundle branch is longer than the left, the right bundle will still be in the refractory period when the supraventricular impulse reaches the His-Purkinje system, resulting in a complex with right bundle branch morphology.
A diagnosis of bradycardia in adults is based on a heart rate less than 60 BPM. This is determined usually either by palpation or electrocardiography.
If symptoms occur, a determination of electrolytes may be helpful in determining the underlying cause.
Premature junctional contractions (PJCs), also called atrioventricular junctional premature complexes or junctional extrasystole, are premature cardiac electrical impulses originating from the atrioventricular node of the heart or "junction". This area is not the normal but only a secondary source of cardiac electrical impulse formation. These premature beats can be found occasionally in healthy people and more commonly in some pathologic conditions, typically in the case of drug cardiotoxicity, electrolyte imbalance, mitral valve surgery, and cold water immersion. If more than two such beats are seen, then the condition is termed junctional rhythm. On the surface ECG, premature junctional contractions will appear as a normally shaped ventricular complex or QRS complex, not preceded by any atrial complex or P wave or preceded by an abnormal P wave with a shorter PR interval. Rarely, the abnormal P wave can follow the QRS.
Surgical correction is recommended when a constriction ring results in a limb contour deformity, with or without lymphedema.
Cardiac myxomas can be difficult to manage surgically because of recurrence within the heart, often far away from the site of the initial tumor.
A fusion beat occurs when electrical impulses from different sources act upon the same region of the heart at the same time. If it acts upon the ventricular chambers it is called a ventricular fusion beat, whereas colliding currents in the atrial chambers produce atrial fusion beats.
Ventricular fusion beats can occur when the heart's natural rhythm and the impulse from a pacemaker coincide to activate the same part of a ventricle at the same time, causing visible variation in configuration and height of the QRS complex of an electrocardiogram reading of the heart's activity. This contrasts with the pseudofusion beat wherein the pacemaker impulse does not affect the complex of the natural beat of the heart. Pseudofusion beats are normal. Rare or isolated fusion beats caused by pacemakers are normal as well, but if they occur too frequently may reduce cardiac output and so can require adjustment of the pacemaker.
At the beginning of the surgery a tourniquet will be applied to the limb. A tourniquet compresses and control the arterial and venous circulation for about 2 hours. The constriction band must be dissected very carefully to avoid damaging the underlying neurovasculature. When the constriction band is excised, there will be a direct closure. This allows the fatty tissue to naturally reposition itself under the skin.
“With complete circumferential constriction bands, it is recommended that a two-stage correction approach be used. At the first operation, one-half of the circumference is excised and the other one-half can be excised after three to six months. This will avoid any problems to the distal circulation in the limb, which may already be compromised. Lymphedema, when present, will significantly improve within a few weeks of the first surgery.”
For the direct closure of the defect after dissecting a constriction band there are two different techniques:
1. Triangular flaps; For this technique the circumference between the two borders must be measured. Depending on the difference the number of triangular flaps can be decided. With a triangular flap you can create more skin.
2. Z/W-plasty; “Z-plasty is a plastic surgery technique that is used to improve the functional and cosmetic appearance of scars. It can elongate a contracted scar or rotate the scar tension line. The middle line of the Z-shaped incision (the central element) is made along the line of greatest tension or contraction, and triangular flaps are raised on opposite sides of the two ends and then transposed.”
In rare cases, if diagnosed in utero, fetal surgery may be considered to save a limb that is in danger of amputation or other deformity. This operation has been successfully performed on fetuses as young as 22 weeks. The Melbourne's Monash Medical Centre in Australia, as well as multiple facilities in the United States of America, have performed successful amniotic band release surgery.
Diagnosis usually occurs upon investigation of a cause for already suspected Cushing's syndrome. High levels of cortisol observed in patients with PPNAD are not suppressed upon administration of dexamethasone (dexamethasone suppression test), and upon MRI or CT imaging, the pituitary will show no abnormalities. Measuring ACTH will confirm that the cause of the patients Cushing's syndrome is ACTH independent. The nature of Cushing's syndrome itself is periodic, which can make diagnosing PPNAD increasingly difficult.
Diagnosis of PPNAD can be difficult to determine preoperatively as CT scan findings can be variable ie appear normal or suggest unilateral adrenal lesions therefore impeding the correct diagnosis. NP-59 scintigraphy may be particularly useful in identifying the bilateral nature of the disease.
Gene studies are not necessary for diagnosis as there are clear gross and histological diagnostic markers, as the nodules can usually be seen clearly in both cases A positive family history of PPNAD has been shown to be associated with abnormal histological findings, e.g. mitotic figures, which may further hinder diagnosis. At the point where abdominal CT scanning and pituitary fossa MRI show no clear abnormalities, adrenalectomy may be performed.