Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The differential diagnosis for heel pain is extensive and includes pathological entities including, but not limited to the following: calcaneal stress fracture, calcaneal bursitis, osteoarthritis, spinal stenosis involving the nerve roots of lumbar spinal nerve 5 (L5) or sacral spinal nerve 1 (S1), calcaneal fat pad syndrome, hypothyroidism, seronegative spondyloparthopathies such as reactive arthritis, ankylosing spondylitis, or rheumatoid arthritis (more likely if pain is present in both heels), plantar fascia rupture, and compression neuropathies such as tarsal tunnel syndrome or impingement of the medial calcaneal nerve.
A determination about a diagnosis of plantar fasciitis can usually be made based on a person's medical history and physical examination. In cases in which the physician suspects fracture, infection, or some other serious underlying condition, an x-ray may be used to make a differential diagnosis. However, and especially for people who stand or walk a lot at work, x-rays should not be used to screen for plantar fasciitis unless imaging is otherwise indicated as using it outside of medical guidelines is unnecessary health care.
Shin splints can be diagnosed by a physician after taking a thorough history and performing a complete physical examination. The physical examination uses gentle pressure to determine whether there is tenderness over a 4–6 inch section on the lower, inside shin area. The pain has been described as a dull ache to an intense pain that increases during exercise, and some individuals experience swelling in the pain area. People who have previously had shin splints are more likely to have it again.
Vascular and neurological examinations produce normal results in patients with shin splints. Radiographies and three-phase bone scans are recommended to differentiate between shin splints and other causes of chronic leg pain. Bone scintigraphy and MRI scans can be used to differentiate between stress fractures and shin splints.
It is important to differentiate between different lower leg pain injuries, including shin splints, stress fractures, compartment syndrome, nerve entrapment, and popliteal artery entrapment syndrome. These conditions often have many overlapping symptoms which makes a final diagnosis difficult, and correct diagnosis is needed to determine the most appropriate treatment.
If shin splints are not treated properly, or if exercise is resumed too early or aggressively, shin splints can become permanent.
Plantar fasciitis is usually diagnosed by a health care provider after consideration of a person's presenting history, risk factors, and clinical examination. Tenderness to palpation along the inner aspect of the heel bone on the sole of the foot may be elicited during the physical examination. The foot may have limited dorsiflexion due to tightness of the calf muscles or the Achilles tendon. Dorsiflexion of the foot may elicit the pain due to stretching of the plantar fascia with this motion. Diagnostic imaging studies are not usually needed to diagnose plantar fasciitis. However, in certain cases a physician may decide imaging studies (such as X-rays, diagnostic ultrasound or MRI) are warranted to rule out serious causes of foot pain.
Other diagnoses that are typically considered include fractures, tumors, or systemic disease if plantar fasciitis pain fails to respond appropriately to conservative medical treatments. Bilateral heel pain or heel pain in the context of a systemic illness may indicate a need for a more in-depth diagnostic investigation. Under these circumstances, diagnostic tests such as a CBC or serological markers of inflammation, infection, or autoimmune disease such as C-reactive protein, erythrocyte sedimentation rate, anti-nuclear antibodies, rheumatoid factor, HLA-B27, uric acid, or Lyme disease antibodies may also be obtained. Neurological deficits may prompt an investigation with electromyography to evaluate for damage to the nerves or muscles.
An incidental finding associated with this condition is a heel spur, a small bony calcification on the calcaneus (heel bone), which can be found in up to 50% of those with plantar fasciitis. In such cases, it is the underlying plantar fasciitis that produces the heel pain, and not the spur itself. The condition is responsible for the creation of the spur though the clinical significance of heel spurs in plantar fasciitis remains unclear.
X-ray images (normally during weightbearing) can be obtained to rule out other conditions or to see if the patient also has osteoarthritis. The menisci themselves cannot be visualised with plain radiographs. If the diagnosis is not clear from the history and examination, the menisci can be imaged with magnetic resonance imaging (an MRI scan). This technique has replaced previous arthrography, which involved injecting contrast medium into the joint space. In straightforward cases, knee arthroscopy allows quick diagnosis and simultaneous treatment. Recent clinical data shows that MRI and clinical testing are comparable in sensitivity and specificity when looking for a meniscal tear.
Diagnosis by a doctor’s examination is the most common, often confirmed by x-rays. X-ray is used to display the fracture and the angulations of the fracture. A CT scan may be done in very rare cases to provide a more detailed picture.
Magnetic Resonance Imaging (MRI) produces a 3-dimensional image that allows for exceptional evaluation of soft tissue structures, as well as the detection of boney change and the presence of excessive fluid accumulation associated with inflammation. Like CT, an MRI image may be viewed in various planes of orientation, improving visualization of anatomic structures and any associated pathologic change. MRI is considered the gold standard for diagnosing soft tissue injury within the foot. While it can provide a definitive diagnosis in cases where other imaging modalities have failed, it does have several limitations. Available magnet size restricts imaging to the level of the stifle or elbow, or below. MRI takes a significant amount of time acquire an image, which translates to long anesthesia times and therefore reduces the size of the area that may be imaged in a single session. The area thought to be associated with lameness must be placed in the MRI. MRI is therefore inappropriate for any lameness that can not be localized to a specific region of the limb. Additionally, MRI has limited availability and high cost compared to the other imaging modalities.
Horses may undergo standing MRI, where the horse is sedated and imaged with a low-field magnet (0.27 Tesla), or it may be placed in a high-field magnet (1.5 or 3 Tesla) while under general anesthesia. Low-field magnets produce less resolution and the subtle swaying of the standing horse leads to motion artifact (blurring of the image), especially in the case of the knee or hock, leading to reduced image quality. However, standing MRI tends to be cheaper, and it eliminates the risks of general anesthesia, such as further damage to the injured area or additional injury that may occur during anesthetic recovery.
Thermography, or thermal imaging, measures the heat gradient of skin by detection of infrared radiation. Because heat is a cardinal sign of inflammation, thermal imaging can be used to detect inflammation that may be the cause of lameness, and at times discover a subclinical injury. When used, horses must be placed in an area free of sunlight exposure, drafts, or other sources of outside heat, and hair length should be uniform in the area imaged. Benefits include non-invasiveness and the potential for early identification of injury, and detection of early contralateral limb injury in the case of orthopedic patients.
A meniscal tear can be classified in various ways: by anatomic location, by proximity to blood supply, etc. Various tear patterns and configurations have been described. These include:
- Radial tears;
- Flap or parrot-beak tears;
- Peripheral, longitudinal tears;
- Bucket-handle tears;
- Horizontal cleavage tears; and
- Complex, degenerative tears.
These tears can then be further classified by their proximity to the meniscus blood supply, namely whether they are located in the “red-red,” “red-white,” or “white-white” zones.
The functional importance of these classifications, however, is to ultimately determine whether a meniscus is repairable. The repairability of a meniscus depends on a number of factors. These include:
- Age/strength
- Activity level
- Tear pattern
- Chronicity of the tear
- Associated injuries (anterior cruciate ligament injury)
- Healing potential
Typical treatments include rest, ice, strengthening and gradually returning to activity. Rest and ice work to allow the tibia to recover from sudden, high levels of stress and reduce inflammation and pain levels. It is important to significantly reduce any pain or swelling before returning to activity. Strengthening exercises should be performed after pain has subsided, on lower leg and hip muscles. Individuals should gradually return to activity, beginning with a short and low intensity level. Over multiple weeks, they can slowly work up to normal activity level. It is important to decrease activity level if any pain returns. Individuals should consider running on other surfaces besides asphalt, such as grass, to decrease the amount of force the lower leg must absorb. Orthoses and insoles help to offset biomechanical irregularities, like pronation, and help to support the arch of the foot. Other conservative interventions include footwear refitting, orthotics, manual therapy, balance training (e.g. using a balance board), cortisone injections, and calcium and vitamin D supplementation.
Less common forms of treatment for more severe cases of shin splints include extracorporeal shockwave therapy (ESWT) and surgery. Surgery is only performed in extreme cases where more conservative options have been tried for at least a year. However, surgery does not guarantee 100% recovery.
Boxers and other combat athletes routinely use hand wraps and boxing gloves to help stabilize the hand, greatly reducing pain and risk of injury during impact. Proper punching form is the most important factor to prevent this type of fracture.
An effective rehabilitation program reduces the chances of reinjury and of other knee-related problems such as patellofemoral pain syndrome and osteoarthritis. Rehabilitation focuses on maintaining strength and range of motion to reduce pain and maintain the health of the muscles and tissues around the knee joint.
CMC OA is diagnosed based on clinical findings and radiologic imaging.
There are few disorders on the differential diagnosis for carpal tunnel syndrome. Cervical radiculopathy can be mistaken for carpal tunnel syndrome since it can also cause abnormal or painful sensations in the hands and wrist. In contrast to carpal tunnel syndrome, the symptoms of cervical radiculopathy usually begins in the neck and travels down the affected arm and may be worsened by neck movement. Electromyography and imaging of the cervical spine can help to differentiate cervical radiculopathy from carpal tunnel syndrome if the diagnosis is unclear. Carpal tunnel syndrome is sometimes applied as a label to anyone with pain, numbness, swelling, and/or burning in the radial side of the hands and/or wrists. When pain is the primary symptom, carpal tunnel syndrome is unlikely to be the source of the symptoms. As a whole, the medical community is not currently embracing or accepting trigger point theories due to lack of scientific evidence supporting their effectiveness.
Two types of treatment options are typically available:
- Surgery
- Conservative treatment (rehabilitation and physical therapy)
Surgery may impede normal growth of structures in the knee, so doctors generally do not recommend knee operations for young people who are still growing. There are also risks of complications, such as an adverse reaction to anesthesia or an infection.
When designing a rehabilitation program, clinicians consider associated injuries such as chipped bones or soft tissue tears. Clinicians take into account the person's age, activity level, and time needed to return to work and/or athletics. Doctors generally only recommend surgery when other structures in the knee have sustained severe damage, or specifically when there is:
- Concurrent osteochondral injury
- Continued gross instability
- Palpable disruption of the medial patellofemoral ligament and the vastus medialis obliquus
- High-level athletic demands coupled with mechanical risk factors and an initial injury mechanism not related to contact
Supplements like glucosamine and NSAIDs can be used to minimize bothersome symptoms.
Most temporomandibular disorders (TMDs) are self-limiting and do not get worse. Simple treatment, involving self-care practices, rehabilitation aimed at eliminating muscle spasms, and restoring correct coordination, is all that is required. Nonsteroidal anti inflammatory analgesics (NSAIDs) should be used on a short-term, regular basis and not on an as needed basis. On the other hand, treatment of chronic TMD can be difficult and the condition is best managed by a team approach; the team consists of a primary care physician, a dentist, a physiotherapist, a psychologist, a pharmacologist, and in small number of cases, a surgeon. The different modalities include patient education and self-care practices, medication, physical therapy, splints, psychological counseling, relaxation techniques, biofeedback, hypnotherapy, acupuncture, and arthrocentesis.
As with most dislocated joints, a dislocated jaw can usually be successfully positioned into its normal position by a trained medical professional. Attempts to readjust the jaw without the assistance of a medical professional could result in worsening of the injury. The health care provider may be able to set it back into the correct position by manipulating the area back into its proper position. Numbing medications such as general anesthetics, muscle relaxants, or in some cases sedation, may be needed to relax the strong jaw muscle. In more severe cases, surgery may be needed to reposition the jaw, particularly if repeated jaw dislocations have occurred.
Bunion can be diagnosed and analyzed by plain projectional radiography. The "hallux valgus angle" (HVA) is the angle between the longitudinal axes of the proximal phalanx and the first metatarsal bone of the big toe. It is considered abnormal if greater than 15–18°. The following HVA angles can also be used to grade the severity of hallux valgus:
- Mild: 15–20°
- Moderate: 21–39°
- Severe: ≥ 40°
The "intermetatarsal angle" (IMA) is the angle between the longitudinal axes of the first and second metatarsal bones, and is normally less than 9°. The IMA angle can also grade the severity of hallux valgus as:
- Mild: 9–11°
- Moderate: 12–17°
- Severe: ≥ 18°
Although widely used, the presence of a positive Phalen test, Tinel sign, Flick sign, or upper limb nerve test alone is not sufficient for diagnosis.
- Phalen's maneuver is performed by flexing the wrist gently as far as possible, then holding this position and awaiting symptoms. A positive test is one that results in numbness in the median nerve distribution when holding the wrist in acute flexion position within 60 seconds. The quicker the numbness starts, the more advanced the condition. Phalen's sign is defined as pain and/or paresthesias in the median-innervated fingers with one minute of wrist flexion. Only this test has been shown to correlate with CTS severity when studied prospectively. The test characteristics of Phalen's maneuver have varied across studies ranging from 42–85% sensitivity and 54–98% specificity.
- Tinel's sign is a classic test to detect median nerve irritation. Tinel's sign is performed by lightly tapping the skin over the flexor retinaculum to elicit a sensation of tingling or "pins and needles" in the median nerve distribution. Tinel's sign (pain and/or paresthesias of the median-innervated fingers with percussion over the median nerve), depending on the study, has 38–100% sensitivity and 55–100% specificity for the diagnosis of CTS.
- Durkan test, "carpal compression test", or applying firm pressure to the palm over the nerve for up to 30 seconds to elicit symptoms has also been proposed.
- Hand elevation test The hand elevation test is performed by lifting both hands above the head, and if symptoms are reproduced in the median nerve distribution within 2 minutes, considered positive. The hand elevation test has higher sensitivity and specificity than Tinel's test, Phalen's test, and carpal compression test. Chi-square statistical analysis has shown the hand elevation test to be as effective, if not better than, Tinel's test, Phalen's test, and carpal compression test.
As a note, a patient with true carpal tunnel syndrome (entrapment of the median nerve within the carpal tunnel) will not have any sensory loss over the thenar eminence (bulge of muscles in the palm of hand and at the base of the thumb). This is because the palmar branch of the median nerve, which innervates that area of the palm, branches off of the median nerve and passes over the carpal tunnel. This feature of the median nerve can help separate carpal tunnel syndrome from thoracic outlet syndrome, or pronator teres syndrome.
Other conditions may also be misdiagnosed as carpal tunnel syndrome. Thus, if history and physical examination suggest CTS, patients will sometimes be tested electrodiagnostically with nerve conduction studies and electromyography. The role of confirmatory nerve conduction studies is controversial. The goal of electrodiagnostic testing is to compare the speed of conduction in the median nerve with conduction in other nerves supplying the hand. When the median nerve is compressed, as in CTS, it will conduct more slowly than normal and more slowly than other nerves. There are many electrodiagnostic tests used to make a diagnosis of CTS, but the most sensitive, specific, and reliable test is the Combined Sensory Index (also known as the Robinson index). Electrodiagnosis rests upon demonstrating impaired median nerve conduction across the carpal tunnel in context of normal conduction elsewhere. Compression results in damage to the myelin sheath and manifests as delayed latencies and slowed conduction velocities However, normal electrodiagnostic studies do not preclude the presence of carpal tunnel syndrome, as a threshold of nerve injury must be reached before study results become abnormal and cut-off values for abnormality are variable. Carpal tunnel syndrome with normal electrodiagnostic tests is very, very mild at worst.
The role of MRI or ultrasound imaging in the diagnosis of carpal tunnel syndrome is unclear. Their routine use is not recommended.
It is important to differentiate between infected and non-infected bursitis. People may have surrounding cellulitis and systemic symptoms include a fever. The bursa should be aspirated to rule out an infectious process.
Bursae that are not infected can be treated symptomatically with rest, ice, elevation, physiotherapy, anti-inflammatory drugs and pain medication. Since bursitis is caused by increased friction from the adjacent structures, a compression bandage is not suggested because compression would create more friction around the joint. Chronic bursitis can be amenable to bursectomy and aspiration.
Bursae that are infected require further investigation and antibiotic therapy. Steroid therapy may also be considered. In cases when all conservative treatment fails, surgical therapy may be necessary. In a bursectomy the bursa is cut out either endoscopically or with open surgery. The bursa grows back in place after a couple of weeks but without any inflammatory component.
Treatment consist of a long leg orthopedic cast for several weeks.
Jaw dislocation is common for people who are in car, motorcycle or related accidents and also sports related activities. This injury does not pin point specific ages or genders because it could happen to anybody. People who dislocate their jaw do not usually seek emergency medical care. In most cases, jaw dislocations are acute and can be altered by minor manipulations. It was reported from one study that over a seven-year period at an emergency medical site, with 100,000 yearly visits, there were only 37 patients that were seen for a dislocated jaw.
Compartment syndrome is a clinical diagnosis made by a physician. It can be tested for by gauging the pressure within the muscle compartments. If the pressure is sufficiently high, a fasciotomy will be required to relieve the pressure. Various recommendations of the intracompartmental pressure are used with some sources quoting >30 mmHg as an indication for fasciotomy while others suggest a <30 mmHg difference between intracompartmental pressure and diastolic blood pressure. This latter measure may be more sensible in the light of recent advances in permissive hypotension, which allow patients to be kept hypotensive in resuscitation. It is now relatively easy to measure compartment and subcutaneous pressures using the pressure transducer modules (with a simple intravenous catheter and needle) that are attached to most modern anaesthetic machines.
Most commonly compartment syndrome is diagnosed through a diagnosis of its underlying cause and not the condition itself. According to Blackman one of the tools to diagnose compartment syndrome is X-ray to show a tibia/fibula fracture, which when combined with numbness of the extremities is enough to confirm the presence of compartment syndrome.
One way to prevent this injury from occurring is to be informed and educated about the risks involved in hurting your wrist and hand. If patients do suffer from median nerve palsy, occupational therapy or wearing a splint can help reduce the pain and further damage. Wearing a dynamic splint, which pulls the thumb into opposition, will help prevent an excess in deformity. This splint can also assist in function and help the fingers flex towards the thumb. Stretching and the use of C-splints can also assist in prevention of further damage and deformity. These two methods can help in the degree of movement the thumb can have. While it is impossible to prevent trauma to your arms and wrist, patients can reduce the amount of compression by maintaining proper form during repetitive activities. Furthermore, strengthening and increasing flexibility reduces the risk of nerve compression.
The proposed mechanism involves shear stress and lack of displacement due to the periosteum that is relatively strong compared to the elastic bone in young children.
There are no set standards for the diagnosis of suspected transient synovitis, so the amount of investigations will depend on the need to exclude other, more serious diseases.
Inflammatory parameters in the blood may be slightly raised (these include erythrocyte sedimentation rate, C-reactive protein and white blood cell count), but raised inflammatory markers are strong predictors of other more serious conditions such as septic arthritis.
X-ray imaging of the hip is most often unremarkable. Subtle radiographic signs include an accentuated pericapsular shadow, widening of the medial joint space, lateral displacement of the femoral epiphyses with surface flattening (Waldenström sign), prominent obturator shadow, diminution of soft tissue planes around the hip joint or slight demineralisation of the proximal femur. The main reason for radiographic examination is to exclude bony lesions such as occult fractures, slipped upper femoral epiphysis or bone tumours (such as osteoid osteoma). An anteroposterior and frog lateral (Lauenstein) view of the pelvis and both hips is advisable.
An ultrasound scan of the hip can easily demonstrate fluid inside the joint capsule (Fabella sign), although this is not always present in transient synovitis. However, it cannot reliably distinguish between septic arthritis and transient synovitis. If septic arthritis needs to be ruled out, needle aspiration of the fluid can be performed under ultrasound guidance. In transient synovitis, the joint fluid will be clear. In septic arthritis, there will be pus in the joint, which can be sent for bacterial culture and antibiotic sensitivity testing.
More advanced imaging techniques can be used if the clinical picture is unclear; the exact role of different imaging modalities remains uncertain. Some studies have demonstrated findings on magnetic resonance imaging (MRI scan) that can differentiate between septic arthritis and transient synovitis (for example, signal intensity of adjacent bone marrow). Skeletal scintigraphy can be entirely normal in transient synovitis, and scintigraphic findings do not distinguish transient synovitis from other joint conditions in children. CT scanning does not appear helpful.
Physical examination shows that the lower legs angle inward. An x-ray of the knee and the lower leg confirms the diagnosis.