Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Early diagnosis is necessary to properly manage sepsis, as initiation of rapid therapy is key to reducing deaths from severe sepsis.
Within the first three hours of suspected sepsis, diagnostic studies should include white blood cell counts, measuring serum lactate, and obtaining appropriate cultures before starting antibiotics, so long as this does not delay their use by more than 45 minutes. To identify the causative organism(s), at least two sets of blood cultures using bottles with media for aerobic and anaerobic organisms should be obtained, with at least one drawn through the skin and one drawn through each vascular access device (such as an IV catheter) in place more than 48 hours. Bacteria are present in the blood in only about 30% of cases. Another possible method of detection is by polymerase chain reaction. If other sources of infection are suspected, cultures of these sources, such as urine, cerebrospinal fluid, wounds, or respiratory secretions, also should be obtained, as long as this does not delay the use of antibiotics.
Within six hours, if blood pressure remains low despite initial fluid resuscitation of 30 ml/kg, or if initial lactate is ≥ 4 mmol/l (36 mg/dl), central venous pressure and central venous oxygen saturation should be measured. Lactate should be re-measured if the initial lactate was elevated. Within twelve hours, it is essential to diagnose or exclude any source of infection that would require emergent source control, such as necrotizing soft tissue infection, infection causing inflammation of the abdominal cavity lining, infection of the bile duct, or intestinal infarction. A pierced internal organ (free air on abdominal x-ray or CT scan), an abnormal chest x-ray consistent with pneumonia (with focal opacification), or petechiae, purpura, or purpura fulminans may be evident of infection.
A 2013 review concluded moderate-quality evidence exists to support use of the procalcitonin level as a method to distinguish sepsis from non-infectious causes of SIRS. The same review found the sensitivity of the test to be 77% and the specificity to be 79%. The authors suggested that procalcitonin may serve as a helpful diagnostic marker for sepsis, but cautioned that its level alone cannot definitively make the diagnosis. A 2012 systematic review found that soluble urokinase-type plasminogen activator receptor (SuPAR) is a nonspecific marker of inflammation and does not accurately diagnose sepsis. This same review concluded, however, that SuPAR has prognostic value, as higher SuPAR levels are associated with an increased rate of death in those with sepsis.
According to current guidelines, requirements for diagnosis with sepsis are "the presence (probable or documented) of infection together with systemic manifestations of infection". These manifestations may include:
- Tachypnea (fast rate of breathing), which is defined as more than 20 breaths per minute, or when testing blood gas, a less than 32 mmHg, which signifies hyperventilation
- White blood cell count either significantly low ( 12000 cells/mm)
- Tachycardia (rapid heart rate), which in sepsis is defined as a rate greater than 90 beats per minute
- Altered body temperature: Fever > or hypothermia <
Documented evidence of infection, may include positive blood culture, signs of pneumonia on chest x-ray, or other radiologic or laboratory evidence of infection. Signs of end-organ dysfunction are present in septic shock, including kidney failure, liver dysfunction, changes in mental status, or elevated serum lactate.
Septic shock is diagnosed if there is low blood pressure (BP) that does not respond to treatment. This means that intravenous fluid administration alone is not enough to maintain a patient's BP. Diagnosis of septic shock is made when systolic blood pressure is less than 90mm Hg, a mean arterial pressure (MAP) is less than 70 mm Hg, or a systolic BP decreases 40 mm Hg or more without other causes for low BP.
While there is tentative evidence for β-Blocker therapy to help control heart rate, evidence is not significant enough for its routine use. There is tentative evidence that steroids may be useful in improving outcomes.
Tentative evidence exists that Polymyxin B-immobilized fiber column hemoperfusion may be beneficial in treatment of septic shock. Trials are ongoing and it is currently being used in Japan and Western Europe.
Recombinant activated protein C (drotrecogin alpha) in a 2011 Cochrane review was found not to decrease mortality and to increase bleeding, and thus, was not recommended for use. Drotrecogin alfa (Xigris), was withdrawn from the market in October 2011.
Bacteremia is most commonly diagnosed by blood culture, in which a sample of blood drawn from the vein by needle puncture is allowed to incubate with a medium that promotes bacterial growth. If bacteria are present in the bloodstream at the time the sample is obtained, the bacteria will multiply and can thereby be detected.
Any bacteria that incidentally find their way to the culture medium will also multiply. For example, if the skin is not adequately cleaned before needle puncture, contamination of the blood sample with normal bacteria that live on the surface of the skin can occur. For this reason, blood cultures must be drawn with great attention to sterile process. The presence of certain bacteria in the blood culture, such as S"taphylococcus aureus", "Streptococcus pneumoniae", and "Escherichia coli" almost never represent a contamination of the sample. On the other hand, contamination may be more highly suspected if organisms like "Staphylococcus epidermidis" or "Propionibacterium acnes" grow in the blood culture.
Two blood cultures drawn from separate sites of the body are often sufficient to diagnose bacteremia. Two out of two cultures growing the same type of bacteria usually represents a real bacteremia, particularly if the organism that grows is not a common contaminant. One out of two positive cultures will usually prompt a repeat set of blood cultures to be drawn to confirm whether a contaminant or a real bacteremia is present. The patient's skin is typically cleaned with an alcohol-based product prior to drawing blood to prevent contamination. Blood cultures may be repeated at intervals to determine if persistent — rather than transient — bacteremia is present.
Prior to drawing blood cultures, a thorough patient history should be taken with particular regard to presence of both fevers and chills, other focal signs of infection such as in the skin or soft tissue, a state of immunosuppression, or any recent invasive procedures.
Ultrasound of the heart is recommended in all those with bacteremia due to "Staphylococcus aureus" to rule out infectious endocarditis.
Neonatal sepsis screening:
1. DLC (differential leukocyte count) showing increased numbers of polymorphs.
2. DLC: band cells > 20%.
3. increased haptoglobins.
4. micro ESR (Erythrocyte Sedimentation Rate) titer > 15mm.
5. gastric aspirate showing > 5 polymorphs per high power field.
6. newborn CSF (Cerebrospinal fluid) screen: showing increased cells and proteins.
7. suggestive history of chorioamnionitis, PROM (Premature rupture of membranes), etc...
Culturing for microorganisms from a sample of CSF, blood or urine, is the gold standard test for definitive diagnosis of neonatal sepsis. This can give false negatives due to the low sensitivity of culture methods and because of concomitant antibiotic therapy. Lumbar punctures should be done when possible as 10-15% presenting with sepsis also have meningitis, which warrants an antibiotic with a high CSF penetration.
CRP is not very accurate in picking up cases.
Diagnosis and the imaging (and laboratory) studies to be ordered largely depend on the patient history, signs and symptoms. If a persistent sore throat with signs of sepsis are found, physicians are cautioned to screen for Lemierre's syndrome.
Laboratory investigations reveal signs of a bacterial infection with elevated C-reactive protein, erythrocyte sedimentation rate and white blood cells (notably neutrophils). Platelet count can be low or high. Liver and kidney function tests are often abnormal.
Thrombosis of the internal jugular vein can be displayed with sonography. Thrombi that have developed recently have low echogenicity or echogenicity similar to the flowing blood, and in such cases pressure with the ultrasound probe show a non-compressible jugular vein - a sure sign of thrombosis. Also color or power Doppler ultrasound identify a low echogenicity blood clot. A CT scan or an MRI scan is more sensitive in displaying the thrombus of the intra-thoracic retrosternal veins, but are rarely needed.
Chest X-ray and chest CT may show pleural effusion, nodules, infiltrates, abscesses and cavitations.
Bacterial cultures taken from the blood, joint aspirates or other sites can identify the causative agent of the disease.
Other illnesses that can be included in the differential diagnosis are:
- Q fever
- Tuberculosis
- Pneumonia
For healthcare-associated bacteremia due to intravenous catheters, the IDSA has published guidelines for catheter removal. Short term catheters (in place 14 days) should be removed if the patient is developing signs or symptoms of sepsis or endocarditis, or if blood cultures remain positive for more than 72 hours.
Note that, in neonates, sepsis is difficult to diagnose clinically. They may be relatively asymptomatic until hemodynamic and respiratory collapse is imminent, so, if there is even a remote suspicion of sepsis, they are frequently treated with antibiotics empirically until cultures are sufficiently proven to be negative. In addition to fluid resuscitation and supportive care, a common antibiotic regimen in infants with suspected sepsis is a beta-lactam antibiotic (usually ampicillin) in combination with an aminoglycoside (usually gentamicin) or a third-generation cephalosporin (usually cefotaxime—ceftriaxone is generally avoided in neonates due to the theoretical risk of kernicterus.) The organisms which are targeted are species that predominate in the female genitourinary tract and to which neonates are especially vulnerable to, specifically Group B Streptococcus, "Escherichia coli", and "Listeria monocytogenes" (This is the main rationale for using ampicillin versus other beta-lactams.) Of course, neonates are also vulnerable to other common pathogens that can cause meningitis and bacteremia such as "Streptococcus pneumoniae" and "Neisseria meningitidis". Although uncommon, if anaerobic species are suspected (such as in cases where necrotizing enterocolitis or intestinal perforation is a concern, clindamycin is often added.
Granulocyte-macrophage colony stimulating factor (GM-CSF) is sometimes used in neonatal sepsis. However, a 2009 study found that GM-CSF corrects neutropenia if present but it has no effect on reducing sepsis or improving survival.
Trials of probiotics for prevention of neonatal sepsis have generally been too small and statistically underpowered to detect any benefit, but a randomized controlled trial that enrolled 4,556 neonates in India reported that probiotics significantly reduced the risk of developing sepsis. The probiotic used in the trial was "Lactobacillus plantarum".
A very large meta-analysis investigated the effect of probiotics on preventing late-onset sepsis (LOS) in neonates. Probiotics were found to reduce the risk of LOS, but only in babies who were fed human milk exclusively. It is difficult to distinguish if the prevention was a result of the probiotic supplementation or if it was a result of the properties of human milk. It is also still unclear if probiotic administration reduces LOS risk in extremely low birth weight infants due to the limited number of studies that investigated it. Out of the 37 studies included in this systematic review, none indicated any safety problems related to the probiotics. It would be beneficial to clarify the relationship between probiotic supplementation and human milk for future studies in order to prevent late onset sepsis in neonates.
When properly diagnosed, the mortality of Lemierre's syndrome is about 4.6%. Since this disease is not well known and often remains undiagnosed, mortality might be much higher.
Routine vaccination against meningococcus is recommended by the Centers for Disease Control and Prevention for all 11- to 18-year-olds and people who have poor splenic function (who, for example, have had their spleen removed or who have sickle-cell disease which damages the spleen), or who have certain immune disorders, such as a complement deficiency.
Typhlitis is a medical emergency and requires prompt management. Untreated typhlitis has a poor prognosis, particularly if associated with pneumatosis intestinalis (air in the bowel wall) and/or bowel perforation, and has significant morbidity unless promptly recognized and aggressively treated.
Successful treatment hinges on:
1. Early diagnosis provided by a high index of suspicion and the use of CT scanning
2. Nonoperative treatment for uncomplicated cases
3. Empiric antibiotics, particularly if the patient is neutropenic or at other risk of infection.
In rare cases of prolonged neutropenia and complications such as bowel perforation, neutrophil transfusions can be considered but have not been studied in a randomized control trial. Elective right hemicolectomy may be used to prevent recurrence but is generally not recommended
"...The authors have found nonoperative treatment highly effective in patients who do not manifest signs of peritonitis, perforation, gastrointestinal hemorrhage, or clinical deterioration. Recurrent typhlitis was frequent after conservative therapy (recurrence rate, 67 percent), however," as based on studies from the 1980s
Fulminant infection from meningococci bacteria in the bloodstream is a medical emergency and requires emergent treatment with adequate antibiotics. Benzylpenicillin was once the drug of choice with chloramphenicol as a good alternative in allergic patients. Ceftriaxone is an antibiotic commonly employed today. Hydrocortisone can sometimes reverse the adrenal insufficiency. Plastic surgery and tissue grafting are sometimes needed to treat tissue necrosis resulting from the infection.
Inflammation can spread to other parts of the gut in patients with typhlitis. The condition can also cause the cecum to become distended and can cut off its blood supply. This and other factors can result in necrosis and perforation of the bowel, which can cause peritonitis and sepsis.
Historically, the mortality rate for typhlitis was as high as 50%, mostly because it is frequently associated with bowel perforation. More recent studies have demonstrated better outcomes with prompt medical management, generally with resolution of symptoms with neutrophil recovery without death
Most patients who develop pancreatic abscesses have had pancreatitis, so a complete medical history is required as a first step in diagnosing abscesses. On the other hand, a white blood cell count is the only laboratory test that may indicate the presence of an abscess.
Some of the imaging tests are more commonly used to diagnose this condition. Abdominal CT scans, MRIs and ultrasounds are helpful in providing clear images of the inside of the abdomen and successfully used in the diagnosing process. These tests may reveal the presence of infected necrosis which has not yet developed into an abscess and as a result, doctors usually order repeated imaging tests in patients with acute pancreatitis whose abdominal pain worsens and who develop signs of abdominal obstruction. Also, it is recommended that patients who have a prolonged clinical response are tested repeatedly as a prevention method to avoid the development of an abscess that may rupture.
In some cases, abscesses may be prevented by draining an existing pseudocyst which is likely to become inflamed. However, in most cases the developing of abscesses cannot be prevented.
The main goals of treatment in distributive shock are to reverse the underlying cause and achieve hemodynamic stabilization. Immediate treatment involves fluid resuscitation and the use of vasoactive drugs, both vasopressors and inotropes. Hydrocortisone is used for patients whose hypotension does not respond to fluid resuscitation and vasopressors. Opening and keeping open the microcirculation is a consideration in the treatment of distributive shock, as a result limiting the use of vasopressors has been suggested. Control of inflammation, vascular function and coagulation to correct pathological differences in blood flow and microvascular shunting has been pointed to as a potentially important adjunct goal in the treatment of distributive shock.
Patients with septic shock are treated with antimicrobial drugs to treat the causative infection. Some sources of infection require surgical intervention including necrotizing fasciitis, cholangitis, abscess, intestinal ischemia, or infected medical devices.
Anaphylactic shock is treated with epinephrine.
Septic shock is associated with significant mortality and is the leading non cardiac cause of death in intensive care units (ICUs).
There may be signs of septic shock. A physical examination reveals abdominal tenderness and possible loss of bowel sounds. An abdominal radiography shows colonic dilation. White blood cell count is usually elevated. Severe sepsis may present with hypothermia or leukopenia.
Generally, the treatment for SIRS is directed towards the underlying problem or inciting cause (i.e. adequate fluid replacement for hypovolemia, IVF/NPO for pancreatitis, epinephrine/steroids/diphenhydramine for anaphylaxis).
Selenium, glutamine, and eicosapentaenoic acid have shown effectiveness in improving symptoms in clinical trials. Other antioxidants such as vitamin E may be helpful as well.
Septic treatment protocol and diagnostic tools have been created due to the potentially severe outcome septic shock. For example, the SIRS criteria were created as mentioned above to be extremely sensitive in suggesting which patients may have sepsis. However, these rules lack specificity, i.e. not a true diagnosis of the condition, but rather a suggestion to take necessary precautions. The SIRS criteria are guidelines set in place to ensure septic patients receive care as early as possible.
In cases caused by an implanted mesh, removal (explantation) of the polypropylene surgical mesh implant may be indicated.
Patients with symptoms of CAP require evaluation. Diagnosis of pneumonia is made clinically, rather than on the basis of a particular test. Evaluation begins with a physical examination by a health provider, which may reveal fever, an increased respiratory rate (tachypnea), low blood pressure (hypotension), a fast heart rate (tachycardia) and changes in the amount of oxygen in the blood. Palpating the chest as it expands and tapping the chest wall (percussion) to identify dull, non-resonant areas can identify stiffness and fluid, signs of CAP. Listening to the lungs with a stethoscope (auscultation) can also reveal signs associated with CAP. A lack of normal breath sounds or the presence of crackles can indicate fluid consolidation. Increased vibration of the chest when speaking, known as tactile fremitus, and increased volume of whispered speech during auscultation can also indicate fluid.
When signs of pneumonia are discovered during evaluation, chest X-rays, are performed to support a diagnosis of CAP, and examination of the blood and sputum for infectious microorganisms and blood tests may be used to support a diagnosis of CAP. Diagnostic tools depend on the severity of illness, local practices and concern about complications of the infection. All patients with CAP should have their blood oxygen monitored with pulse oximetry. In some cases, arterial blood gas analysis may be required to determine the amount of oxygen in the blood. A complete blood count (CBC) may reveal extra white blood cells, indicating infection.
Chest X-rays and X-ray computed tomography (CT) can reveal areas of opacity (seen as white), indicating consolidation. CAP does not always appear on x-rays, because the disease is in its initial stages or involves a part of the lung an x-ray does not see well. In some cases, chest CT can reveal pneumonia not seen on x-rays. However, congestive heart failure or other types of lung damage can mimic CAP on x-rays.
Several tests can identify the cause of CAP. Blood cultures can isolate bacteria or fungi in the bloodstream. Sputum Gram staining and culture can also reveal the causative microorganism. In severe cases, bronchoscopy can collect fluid for culture. Special tests can be performed if an uncommon microorganism is suspected, such as urinalysis for Legionella antigen in Legionnaires' disease.
Some CAP patients require intensive care, with clinical prediction rules such as the pneumonia severity index and CURB-65 guiding the decision to hospitalize. Factors increasing the need for hospitalization include:
- Age greater than 65
- Underlying chronic illnesses
- Respiratory rate greater than 30 per minute
- Systolic blood pressure less than 90 mmHg
- Heart rate greater than 125 per minute
- Temperature below 35 or over 40 °C
- Confusion
- Evidence of infection outside the lung
Laboratory results indicating hospitalization include:
- Arterial oxygen tension less than 60 mm Hg
- Carbon dioxide over 50 mmHg or pH under 7.35 while breathing room air
- Hematocrit under 30 percent
- Creatinine over 1.2 mg/dl or blood urea nitrogen over 20 mg/dl
- White-blood-cell count under 4 × 10^9/L or over 30 × 10^9/L
- Neutrophil count under 1 x 10^9/L
X-ray findings indicating hospitalization include:
- Involvement of more than one lobe of the lung
- Presence of a cavity
- Pleural effusion
A number of other conditions can cause fevers following delivery including: urinary tract infections, breast engorgement, atelectasis and surgical incisions among others.
Puerperal fever is diagnosed when:
- A temperature rise above maintained over 24 hours or recurring during the period from the end of the first to the end of the 10th day after childbirth or abortion. (ICD-10)
- Oral temperature of or more on any two of the first ten days postpartum. (USJCMW)
Puerperal fever (from the Latin "puer", "male child (boy)"), is no longer favored as a diagnostic category. Instead, contemporary terminology specifies:
1. the specific target of infection: endometritis (inflammation of the inner lining of the uterus), metrophlebitis (inflammation of the veins of the uterus), and peritonitis (inflammation of the membrane lining of the abdomen)
2. the severity of the infection: less serious infection (contained multiplication of microbes) or possibly life-threatening sepsis (uncontrolled and uncontained multiplication of microbes throughout the blood stream).
Endometritis is a polymicrobial infection. It frequently includes organisms such as "Ureaplasma", "Streptococcus", "Mycoplasma", and "Bacteroides", and may also include organisms such as "Gardnerella", "Chlamydia", "Lactobacillus", "Escherichia", and "Staphylococcus".
Generally accepted reference range for absolute neutrophil count (ANC) in adults is 1500 to 8000 cells per microliter (µl) of blood. Three general guidelines are used to classify the severity of neutropenia based on the ANC (expressed below in cells/µl):
- Mild neutropenia (1000 <= ANC < 1500): minimal risk of infection
- Moderate neutropenia (500 <= ANC < 1000): moderate risk of infection
- Severe neutropenia (ANC < 500): severe risk of infection.
Each of these are either derived from laboratory tests or via the formula below:
ANC = formula_1