Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
The diagnosis of Kaufman oculocerebrofacial syndrome can be achieved via molecular testing approaches. Additionally to ascertain if the individual has the condition:
- Growth assessment
- Thyroid function evaluation
- Kidney ultrasound
- Echocardiogram
Kaufman oculocerebrofacial syndrome differential diagnosis consists of:
Brain MRI shows vermis atrophy or hypoplasic. Cerebral and cerebellar atrophy with white matter changes in some cases.
Diagnosing Jacobsen Syndrome can be difficult in some cases because it is a rare chromosomal disorder. There are a variety of tests that can be carried out like karyotype, cardiac echocardiogram, a renal sonogram, a platelet count, blood count, a brain imaging study. Genetic testing can be carried out for diagnosis. In which chromosomes are stained to give a barcode like appearance and studied under the microscope which reveals the broken and deleted genes. It can also be diagnosed early in the prenatal stage if there are any abnormalities seen in the ultrasound. A simple assessment of the symptoms can be done to diagnose the Syndrome. A thorough physical examination could be carried out to assess the symptoms.
Differential diagnosis includes Angelman syndrome, Mowat–Wilson syndrome and Rett syndrome.
SMS is usually confirmed by blood tests called chromosome (cytogenetic) analysis and utilize a technique called FISH (fluorescent in situ hybridization). The characteristic micro-deletion was sometimes overlooked in a standard FISH test, leading to a number of people with the symptoms of SMS with negative results.
The recent development of the FISH for 17p11.2 deletion test has allowed more accurate detection of this deletion. However, further testing is required for variations of Smith–Magenis syndrome that are caused by a mutation of the "RAI1" gene as opposed to a deletion.
Children with SMS are often given psychiatric diagnoses such as autism, attention deficit/hyperactivity disorder (ADHD), obsessive-compulsive disorder (OCD), attention deficit disorder (ADD) and/or mood disorders.
At present, treatment for distal 18q- is symptomatic, meaning the focus is on treating the signs and symptoms of the conditions as they arise. To ensure early diagnosis and treatment, people with distal 18q- are suggested to undergo routine screenings for thyroid, hearing, and vision problems.
Suspicion of a chromosome abnormality is typically raised due to the presence of developmental delays or birth defects. Diagnosis of distal 18q- is usually made from a blood sample. A routine chromosome analysis, or karyotype, is usually used to make the initial diagnosis, although it may also be made by microarray analysis. Increasingly, microarray analysis is also being used to clarify breakpoints. Prenatal diagnosis is possible using amniocentesis or chorionic villus sampling.
Cytogenetic analysis for fragile X syndrome was first available in the late 1970s when diagnosis of the syndrome and carrier status could be determined by culturing cells in a folate deficient medium and then assessing for "fragile sites" (discontinuity of staining in the region of the trinucleotide repeat) on the long arm of the X chromosome. This technique proved unreliable, however, as the fragile site was often seen in less than 40% of an individual's cells. This was not as much of a problem in males, but in female carriers, where the fragile site could generally only be seen in 10% of cells, the mutation often could not be visualised.
Since the 1990s, more sensitive molecular techniques have been used to determine carrier status. The fragile X abnormality is now directly determined by analysis of the number of CGG repeats using polymerase chain reaction (PCR) and methylation status using Southern blot analysis. By determining the number of CGG repeats on the X chromosome, this method allows for more accurate assessment of risk for premutation carriers in terms of their own risk of fragile X associated syndromes, as well as their risk of having affected children. Because this method only tests for expansion of the CGG repeat, individuals with FXS due to missense mutations or deletions involving "FMR1" will not be diagnosed using this test and should therefore undergo sequencing of the FMR1 gene if there is clinical suspicion of FXS.
Prenatal testing with chorionic villus sampling or amniocentesis allows diagnosis of FMR1 mutation while the fetus is in utero and appears to be reliable.
Early diagnosis of fragile X syndrome or carrier status is important for providing early intervention in children or fetuses with the syndrome, and allowing genetic counselling with regards to the potential for a couple's future children to be affected. Most parents notice delays in speech and language skills, difficulties in social and emotional domains as well as sensitivity levels in certain situations with their children.
The first English-language IQ test, the Stanford–Binet Intelligence Scales, was adapted from a test battery designed for school placement by Alfred Binet in France. Lewis Terman adapted Binet's test and promoted it as a test measuring "general intelligence." Terman's test was the first widely used mental test to report scores in "intelligence quotient" form ("mental age" divided by chronological age, multiplied by 100). Current tests are scored in "deviation IQ" form, with a performance level by a test-taker two standard deviations below the median score for the test-taker's age group defined as IQ 70. Until the most recent revision of diagnostic standards, an IQ of 70 or below was a primary factor for intellectual disability diagnosis, and IQ scores were used to categorize degrees of intellectual disability.
Since current diagnosis of intellectual disability is not based on IQ scores alone, but must also take into consideration a person's adaptive functioning, the diagnosis is not made rigidly. It encompasses intellectual scores, adaptive functioning scores from an adaptive behavior rating scale based on descriptions of known abilities provided by someone familiar with the person, and also the observations of the assessment examiner who is able to find out directly from the person what he or she can understand, communicate, and such like. IQ assessment must be based on a current test. This enables diagnosis to avoid the pitfall of the Flynn effect, which is a consequence of changes in population IQ test performance changing IQ test norms over time.
1. Clinical Genetics and Genetic Testing
Genetic testing is necessary to confirm the diagnosis of PMS. A prototypical terminal deletion of 22q13 can be uncovered by karyotype analysis, but many terminal and interstitial deletions are too small to detect with this method. Chromosomal microarray should be ordered in children with suspected developmental delays or ASD. Most cases will be identified by microarray; however, small variations in genes might be missed. The falling cost for whole exome sequencing may replace DNA microarray technology for candidate gene evaluation. Biological parents should be tested with fluorescence "in situ" hybridization (FISH) to rule out balanced translocations or inversions. Balanced translocation in a parent increases the risk for recurrence and heritability within families (figure 3).
Clinical genetic evaluations and dysmorphology exams should be done to evaluate growth, pubertal development, dysmorphic features (table 1) and screen for organ defects (table 2)
2. Cognitive and Behavioral Assessment
All patients should undergo comprehensive developmental, cognitive and behavioral assessments by clinicians with experience in developmental disorders. Cognitive evaluation should be tailored for individuals with significant language and developmental delays. All patients should be referred for specialized speech/language, occupational and physical therapy evaluations.
3. Neurological Management
Individuals with PMS should be followed by a pediatric neurologist regularly to monitor motor development, coordination and gait, as well as conditions that might be associated with hypotonia. Head circumference should be performed routinely up until 36 months. Given the high rate of seizure disorders (up to 41% of patients) reported in the literature in patients with PMS and its overall negative impact on development, an overnight video EEG should be considered early to rule out seizure activity. In addition, a baseline structural brain MRI should be considered to rule out the presence of structural abnormalities.
4. Nephrology
All patients should have a baseline renal and bladder ultrasonography and a voiding cystourethrogram should be considered to rule out structural and functional abnormalities. Renal abnormalities are reported in up to 38% of patients with PMS. Vesicouretral reflux, hydronephrosis, renal agenesis, dysplasic kidney, polycystic kidney and recurrent urinary tract infections have all been reported in patients with PMS.
5. Cardiology
Congenital heart defects (CHD) are reported in samples of children with PMS with varying frequency (up to 25%)(29,36). The most common CHD include tricuspid valve regurgitation, atrial septal defects and patent ductus arteriousus. Cardiac evaluation, including echocardiography and electrocardiogram, should be considered.
6. Gastroenterology
Gastrointestinal symptoms are common in individuals with PMS. Gastroesophageal reflux, constipation, diarrhea and cyclic vomiting are frequently described.
Table 3: Clinical Assessment Recommendations in Phelan McDermid Syndrome.
Diagnosis is made by showing a mutation in the TCF4 gene.
Around 50% of those affected show abnormalities on brain imaging. These include hypoplastic corpus callosum with a missing rostrum and posterior part of the splenium with bulbous caudate nuclei bulging towards the frontal horns.
Electroencephalograms show an excess of slow components.
All have low levels of immunoglobulin M (IgM) but features of an immunodeficiency are absent.
Suspicion of a chromosome abnormality is typically raised due to the presence of developmental delays or congenital malformations. Diagnosis of tetrasomy 18p is typically made via a routine chromosome analysis from a blood sample. The diagnosis can also be made prenatally by chorionic villus sampling or amniocentesis.
Severity of tetrasomy 18p is variable. Individuals with mosaicism are typically less severely affected than non-mosaic individuals.
Diagnosis is based on the distinctive cry and accompanying physical problems. These common symptoms are quite easily observed in infants. Affected children are typically diagnosed by a doctor or nurse at birth. Genetic counseling and genetic testing may be offered to families with individuals who have cri du chat syndrome. Prenatally the deletion of the cri du chat related region in the p arm of chromosome 5 can be detected from amniotic fluid or chorionic villi samples with BACs-on-Beads technology. G-banded karyotype of a carrier is also useful. Children may be treated by speech, physical and occupational therapists. Heart abnormalities often require surgical correction.
Even though clinical diagnostic criteria have not been 100 percent defined for genitopatellar syndrome, the researchers stated that the certain physical features could relate to KAT6B mutation and result in the molecular genetic testing. The researchers stated that the Individuals with two major features or one major feature and two minor features are likely to have a KAT6B mutation.
To diagnose the Genitopatellar Syndrome, there are multiple ways to evaluate.
Medical genetics consultation
- Evaluation by developmental specialist
- Feeding evaluation
- Baseline hearing evaluation
- Thyroid function tests
- Evaluation of males for cryptorchidism
- Orthopedic evaluation if contractures are present or feet/ankles are malpositioned
- Hip radiographs to evaluate for femoral head dislocation
- Renal ultrasound examination for hydronephrosis and cysts
- Echocardiogram for congenital heart defects
- Evaluation for laryngomalacia if respiratory issues are present
- Evaluation by gastroenterologist as needed, particularly if bowel malrotation is suspected
Adaptive behavior, or adaptive functioning, refers to the skills needed to live independently (or at the minimally acceptable level for age). To assess adaptive behavior, professionals compare the functional abilities of a child to those of other children of similar age. To measure adaptive behavior, professionals use structured interviews, with which they systematically elicit information about persons' functioning in the community from people who know them well. There are many adaptive behavior scales, and accurate assessment of the quality of someone's adaptive behavior requires clinical judgment as well. Certain skills are important to adaptive behavior, such as:
- Daily living skills, such as getting dressed, using the bathroom, and feeding oneself
- Communication skills, such as understanding what is said and being able to answer
- Social skills with peers, family members, spouses, adults, and others
Although 1p36 Deletion Syndrome can be debilitating in many ways, patients do respond to various treatments and therapies. These include the following:
American Sign Language: Because few individuals with Monosomy 1p36 develop complex speech, an alternate form of communication is critical to development. Most patients can learn basic signs to communicate their needs and wants. This also appears to reduce frustration and may reduce self-injurious tendencies. Children with hearing loss will often qualify for locally sponsored sign language classes.
Music Therapy: Music has been shown to aid children with 1p36 deletion in various developmental areas. It serves as an excellent auditory stimulus and can teach listening skills. Songs with actions help the child to develop coordination and motor skills.
Physical Therapy: Due to low muscle tone, patients with 1p36 Deletions take a great deal of time to learn to roll over, sit up, crawl and walk. However, regular physical therapy has shown to shorten the length of time needed to achieve each of those developmental milestones.
Occupational Therapy can be helpful to help children with oral motor and feeding difficulties (including dysphagia and transitioning to solid foods) as well as developmental delays in motor, social and sensory domains.
13q deletion syndrome can only be definitively diagnosed by genetic analysis, which can be done prenatally or after birth. Increased nuchal translucency in a first-trimester ultrasound may indicate the presence of 13q deletion.
Kabuki syndrome can be diagnosed using whole exome or whole genome sequencing. Some patients who were initially clinically diagnosed with Kabuki syndrome were actually found to have Wiedemann-Steiner syndrome.
This includes Ataxia-telegiectasia, Chédiak-Higashi syndrome, DiGeorge syndrome, Griscelli syndrome and Marinesco-Sjogren syndrome.
There is no specific treatment for micro syndrome, but there are ways to help the disorders, and illnesses that come with it. Many individuals with Micro Syndrome need permanent assistance from their disorders and inabilities to move and support themselves. Seizures are not uncommon and patients should get therapy to help control them, and many patients also require wheelchairs to move, so an assistant would be needed at all times.
Those with micro syndrome are born appearing normal. At the age of one, mental and physical delays become apparent, along with some limb spasms. By the age of eight micro syndrome has already set in, and the patient will have joint contractures, Ocular Atrophy will become noticeable, the patient will most likely lose ability to walk, speak, and sometimes move at all.
At present, treatment for tetrasomy 18p is symptomatic, meaning that the focus is on treating the signs and symptoms of the conditions as they arise. The Chromosome 18 Clinical Research Center has published a list of recommended screening and evaluations:
The diagnosis of Jackson–Weiss syndrome is done via the following:
- Genetic testing
- Clinical presentation
The following should be taken into account when pronouncing a diagnosis for this condition:
The DDx for this condition includes metopic synostosis, as well as Lambdoida synostosis.